subbu264 commited on
Commit
f377409
·
verified ·
1 Parent(s): 7bd1291

Delete configuration_codet5p.py

Browse files
Files changed (1) hide show
  1. configuration_codet5p.py +0 -113
configuration_codet5p.py DELETED
@@ -1,113 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2023 Salesforce authors, The EleutherAI, and HuggingFace Teams. All rights reserved.
3
-
4
- """ CodeT5+ model configuration"""
5
- from transformers.configuration_utils import PretrainedConfig
6
- from transformers.utils import logging
7
- import copy
8
-
9
- logger = logging.get_logger(__name__)
10
-
11
-
12
- # Adapted from transformers.models.codegen.configuration_codegen.CodeGenConfig
13
- class CodeT5pModuleConfig(PretrainedConfig):
14
- model_type = "codet5p_module"
15
- attribute_map = {
16
- "max_position_embeddings": "n_positions",
17
- "hidden_size": "n_embd",
18
- "num_attention_heads": "n_head",
19
- "num_hidden_layers": "n_layer",
20
- }
21
-
22
- def __init__(
23
- self,
24
- vocab_size=50400,
25
- n_positions=2048,
26
- n_ctx=2048,
27
- n_embd=4096,
28
- n_layer=28,
29
- n_head=16,
30
- rotary_dim=64,
31
- n_inner=None,
32
- activation_function="gelu_new",
33
- resid_pdrop=0.0,
34
- embd_pdrop=0.0,
35
- attn_pdrop=0.0,
36
- layer_norm_epsilon=1e-5,
37
- initializer_range=0.02,
38
- scale_attn_weights=True,
39
- use_cache=True,
40
- bos_token_id=50256,
41
- eos_token_id=50256,
42
- tie_word_embeddings=False,
43
- **kwargs
44
- ):
45
- self.vocab_size = vocab_size
46
- self.n_ctx = n_ctx
47
- self.n_positions = n_positions
48
- self.n_embd = n_embd
49
- self.n_layer = n_layer
50
- self.n_head = n_head
51
- self.n_inner = n_inner
52
- self.rotary_dim = rotary_dim
53
- self.activation_function = activation_function
54
- self.resid_pdrop = resid_pdrop
55
- self.embd_pdrop = embd_pdrop
56
- self.attn_pdrop = attn_pdrop
57
- self.layer_norm_epsilon = layer_norm_epsilon
58
- self.initializer_range = initializer_range
59
- self.scale_attn_weights = scale_attn_weights
60
- self.use_cache = use_cache
61
-
62
- self.bos_token_id = bos_token_id
63
- self.eos_token_id = eos_token_id
64
-
65
- super().__init__(
66
- bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
67
- )
68
-
69
-
70
- # Adapted from transformers.models.encoder_decoder.configuration_encoder_decoder.EncoderDecoderConfig
71
- class CodeT5pConfig(PretrainedConfig):
72
- model_type = "codet5p"
73
- is_composition = True
74
-
75
- def __init__(self, **kwargs):
76
- super().__init__(**kwargs)
77
- assert (
78
- "encoder" in kwargs and "decoder" in kwargs
79
- ), "Config has to be initialized with encoder and decoder config"
80
- encoder_config = kwargs.pop("encoder")
81
- decoder_config = kwargs.pop("decoder")
82
- encoder_model_type = encoder_config.pop("model_type")
83
- decoder_model_type = decoder_config.pop("model_type")
84
-
85
- if encoder_model_type != decoder_model_type:
86
- logger.warning("Encoder and decoder model types are different")
87
-
88
- self.encoder = CodeT5pModuleConfig(**encoder_config)
89
- self.decoder = CodeT5pModuleConfig(**decoder_config)
90
- self.is_encoder_decoder = True
91
-
92
- @classmethod
93
- def from_encoder_decoder_configs(
94
- cls, encoder_config: PretrainedConfig, decoder_config: PretrainedConfig, **kwargs
95
- ) -> PretrainedConfig:
96
- logger.info("Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config")
97
- decoder_config.is_decoder = True
98
- decoder_config.add_cross_attention = True
99
-
100
- return cls(encoder=encoder_config.to_dict(), decoder=decoder_config.to_dict(), **kwargs)
101
-
102
- def to_dict(self):
103
- """
104
- Serializes this instance to a Python dictionary. Override the default *to_dict()* from *PretrainedConfig*.
105
-
106
- Returns:
107
- `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
108
- """
109
- output = copy.deepcopy(self.__dict__)
110
- output["encoder"] = self.encoder.to_dict()
111
- output["decoder"] = self.decoder.to_dict()
112
- output["model_type"] = self.__class__.model_type
113
- return output