Commit
·
655ebef
1
Parent(s):
c2c9422
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
model-index:
|
5 |
+
- name: uaspeech-foundation-fintuned
|
6 |
+
results: []
|
7 |
+
---
|
8 |
+
|
9 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
10 |
+
should probably proofread and complete it, then remove this comment. -->
|
11 |
+
|
12 |
+
# uaspeech-foundation-fintuned
|
13 |
+
|
14 |
+
It achieves the following results on the evaluation set:
|
15 |
+
- Loss: 2.5324
|
16 |
+
- Wer: 1.2855
|
17 |
+
|
18 |
+
## Model description
|
19 |
+
|
20 |
+
More information needed
|
21 |
+
|
22 |
+
## Intended uses & limitations
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Training and evaluation data
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training procedure
|
31 |
+
|
32 |
+
### Training hyperparameters
|
33 |
+
|
34 |
+
The following hyperparameters were used during training:
|
35 |
+
- learning_rate: 0.0001
|
36 |
+
- train_batch_size: 4
|
37 |
+
- eval_batch_size: 8
|
38 |
+
- seed: 42
|
39 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
40 |
+
- lr_scheduler_type: linear
|
41 |
+
- lr_scheduler_warmup_steps: 1000
|
42 |
+
- num_epochs: 30
|
43 |
+
|
44 |
+
### Training results
|
45 |
+
|
46 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
47 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
48 |
+
| 41.2984 | 0.7 | 500 | 2.8954 | 1.0 |
|
49 |
+
| 3.0227 | 1.4 | 1000 | 2.8232 | 1.0042 |
|
50 |
+
| 2.8283 | 2.11 | 1500 | 2.6291 | 1.0309 |
|
51 |
+
| 2.5552 | 2.81 | 2000 | 2.2593 | 1.9170 |
|
52 |
+
| 2.1714 | 3.51 | 2500 | 1.9586 | 1.9142 |
|
53 |
+
| 1.8537 | 4.21 | 3000 | 1.5725 | 1.8579 |
|
54 |
+
| 1.6087 | 4.92 | 3500 | 1.2772 | 1.7426 |
|
55 |
+
| 1.3108 | 5.62 | 4000 | 1.2792 | 1.6751 |
|
56 |
+
| 1.1652 | 6.32 | 4500 | 1.4565 | 1.6174 |
|
57 |
+
| 1.0113 | 7.02 | 5000 | 1.1906 | 1.5626 |
|
58 |
+
| 0.925 | 7.72 | 5500 | 1.4491 | 1.5260 |
|
59 |
+
| 0.8183 | 8.43 | 6000 | 1.3712 | 1.5387 |
|
60 |
+
| 0.7118 | 9.13 | 6500 | 1.4713 | 1.4866 |
|
61 |
+
| 0.6959 | 9.83 | 7000 | 1.3336 | 1.4318 |
|
62 |
+
| 0.6146 | 10.53 | 7500 | 1.3690 | 1.4177 |
|
63 |
+
| 0.5655 | 11.24 | 8000 | 1.3789 | 1.4135 |
|
64 |
+
| 0.4969 | 11.94 | 8500 | 1.5476 | 1.3966 |
|
65 |
+
| 0.4705 | 12.64 | 9000 | 1.9062 | 1.3797 |
|
66 |
+
| 0.4387 | 13.34 | 9500 | 1.2711 | 1.3924 |
|
67 |
+
| 0.4115 | 14.04 | 10000 | 1.6318 | 1.3769 |
|
68 |
+
| 0.3695 | 14.75 | 10500 | 1.5119 | 1.3755 |
|
69 |
+
| 0.377 | 15.45 | 11000 | 1.6637 | 1.3812 |
|
70 |
+
| 0.3788 | 16.15 | 11500 | 1.6636 | 1.3699 |
|
71 |
+
| 0.3396 | 16.85 | 12000 | 1.6572 | 1.3418 |
|
72 |
+
| 0.3047 | 17.56 | 12500 | 1.4740 | 1.3361 |
|
73 |
+
| 0.2804 | 18.26 | 13000 | 2.0885 | 1.3249 |
|
74 |
+
| 0.2995 | 18.96 | 13500 | 1.9536 | 1.3235 |
|
75 |
+
| 0.2628 | 19.66 | 14000 | 1.7736 | 1.3179 |
|
76 |
+
| 0.2703 | 20.37 | 14500 | 2.0018 | 1.3291 |
|
77 |
+
| 0.2335 | 21.07 | 15000 | 1.7962 | 1.3221 |
|
78 |
+
| 0.2068 | 21.77 | 15500 | 2.3187 | 1.3136 |
|
79 |
+
| 0.2311 | 22.47 | 16000 | 2.4853 | 1.3291 |
|
80 |
+
| 0.2491 | 23.17 | 16500 | 2.1901 | 1.3024 |
|
81 |
+
| 0.1836 | 23.88 | 17000 | 2.4344 | 1.2911 |
|
82 |
+
| 0.1823 | 24.58 | 17500 | 2.3705 | 1.3066 |
|
83 |
+
| 0.1575 | 25.28 | 18000 | 2.1864 | 1.2897 |
|
84 |
+
| 0.1451 | 25.98 | 18500 | 2.4216 | 1.2883 |
|
85 |
+
| 0.1502 | 26.69 | 19000 | 2.1780 | 1.2855 |
|
86 |
+
| 0.1392 | 27.39 | 19500 | 2.4009 | 1.2925 |
|
87 |
+
| 0.1609 | 28.09 | 20000 | 2.4250 | 1.2982 |
|
88 |
+
| 0.1066 | 28.79 | 20500 | 2.4433 | 1.2897 |
|
89 |
+
| 0.1514 | 29.49 | 21000 | 2.5063 | 1.2855 |
|
90 |
+
|
91 |
+
|
92 |
+
### Framework versions
|
93 |
+
|
94 |
+
- Transformers 4.23.1
|
95 |
+
- Pytorch 1.12.1+cu113
|
96 |
+
- Datasets 1.18.3
|
97 |
+
- Tokenizers 0.13.2
|