iniit
Browse files- main.py +79 -0
- requirements.txt +4 -0
main.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# from flask import Flask, request, jsonify
|
2 |
+
# import tensorflow as tf
|
3 |
+
# import numpy as np
|
4 |
+
|
5 |
+
# app = Flask(__name__)
|
6 |
+
|
7 |
+
# # Load the model
|
8 |
+
# model = tf.keras.models.load_model('walking_classifier_tf.h5')
|
9 |
+
|
10 |
+
# @app.route('/predict', methods=['POST'])
|
11 |
+
# def predict():
|
12 |
+
# data = request.get_json(force=True)
|
13 |
+
# predictions = model.predict(np.array(data['features']))
|
14 |
+
# return jsonify({'predictions': predictions.tolist()})
|
15 |
+
|
16 |
+
# if __name__ == '__main__':
|
17 |
+
# app.run(host='0.0.0.0', port=5000)
|
18 |
+
|
19 |
+
|
20 |
+
import os
|
21 |
+
from flask import Flask, request, jsonify
|
22 |
+
import numpy as np
|
23 |
+
import tensorflow as tf
|
24 |
+
from sklearn.preprocessing import StandardScaler
|
25 |
+
import joblib
|
26 |
+
|
27 |
+
app = Flask(__name__)
|
28 |
+
|
29 |
+
# Load the saved scaler and model
|
30 |
+
scaler = StandardScaler()
|
31 |
+
scaler.mean_ = np.loadtxt('scaler_mean.csv', delimiter=',')
|
32 |
+
scaler.scale_ = np.loadtxt('scaler_std.csv', delimiter=',')
|
33 |
+
|
34 |
+
# Load the TFLite model and allocate tensors
|
35 |
+
interpreter = tf.lite.Interpreter(model_path="walking_classifier.tflite")
|
36 |
+
interpreter.allocate_tensors()
|
37 |
+
|
38 |
+
input_details = interpreter.get_input_details()
|
39 |
+
output_details = interpreter.get_output_details()
|
40 |
+
|
41 |
+
@app.route('/predict', methods=['POST'])
|
42 |
+
def predict():
|
43 |
+
try:
|
44 |
+
# Get the data from the request
|
45 |
+
input_data = request.json['data']
|
46 |
+
|
47 |
+
# Convert to numpy array and reshape
|
48 |
+
input_data = np.array(input_data, dtype=np.float32)
|
49 |
+
|
50 |
+
# Normalize the data
|
51 |
+
input_data = scaler.transform(input_data)
|
52 |
+
|
53 |
+
# Check the input shape
|
54 |
+
if input_data.shape[1] != input_details[0]['shape'][1]:
|
55 |
+
return jsonify({"error": "Input shape does not match model expected shape."})
|
56 |
+
|
57 |
+
# Prepare the prediction list
|
58 |
+
predictions = []
|
59 |
+
|
60 |
+
# Run the model for each input data
|
61 |
+
for i in range(input_data.shape[0]):
|
62 |
+
single_input_data = input_data[i].reshape(1, -1)
|
63 |
+
interpreter.set_tensor(input_details[0]['index'], single_input_data)
|
64 |
+
interpreter.invoke()
|
65 |
+
output_data = interpreter.get_tensor(output_details[0]['index'])[0]
|
66 |
+
predictions.append(float(output_data))
|
67 |
+
|
68 |
+
# Convert to binary labels
|
69 |
+
threshold = 0.5
|
70 |
+
predicted_labels = (np.array(predictions) > threshold).astype(int).tolist()
|
71 |
+
|
72 |
+
# Return the predictions as JSON
|
73 |
+
return jsonify({"predictions": predicted_labels})
|
74 |
+
except Exception as e:
|
75 |
+
return jsonify({"error": str(e)})
|
76 |
+
|
77 |
+
if __name__ == '__main__':
|
78 |
+
port = int(os.environ.get('PORT', 8080))
|
79 |
+
app.run(host='0.0.0.0', port=port)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Flask
|
2 |
+
tensorflow
|
3 |
+
scikit-learn
|
4 |
+
numpy
|