coencoder_test2_phase1_2 / tokenization_co_encoder.py
sudy-super's picture
Upload tokenization_co_encoder.py
1fc3b01 verified
# coding=utf-8
"""Tokenization classes for CoEncoder"""
import os
import json
from typing import List, Union, Optional
from transformers import AutoTokenizer
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.utils import logging
from transformers.feature_extraction_utils import BatchFeature
logger = logging.get_logger(__name__)
class CoEncoderDualTokenizer(ProcessorMixin):
r"""
CoEncoderDualTokenizer is tokenizer for the CoEncoder model. It processes context and main text.
Args:
context_tokenizer ([`PreTrainedTokenizer`]):
The tokenizer for context.
text_tokenizer ([`PreTrainedTokenizer`]):
The tokenizer for main text.
"""
attributes = ["context_tokenizer", "text_tokenizer"]
context_tokenizer_class = "AutoTokenizer"
text_tokenizer_class = "AutoTokenizer"
def __init__(self, context_tokenizer=None, text_tokenizer=None):
super().__init__(context_tokenizer, text_tokenizer)
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs):
"""
Load both context and text tokenizers from a given repository.
Args:
pretrained_model_name_or_path (str): The name or path of the Hugging Face repository.
Returns:
CoEncoderDualTokenizer: An instance of the tokenizer class.
"""
# Load context_tokenizer from 'context_tokenizer' directory
context_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path,
subfolder="context_tokenizer",
**kwargs
)
# Load text_tokenizer from 'text_tokenizer' directory
text_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path,
subfolder="text_tokenizer",
**kwargs
)
# Return a new instance of CoEncoderDualTokenizer with both tokenizers loaded
return cls(context_tokenizer=context_tokenizer, text_tokenizer=text_tokenizer)
def save_pretrained(self, save_directory: str, **kwargs):
"""
Save the tokenizer to a directory, so that it can be reloaded using the `from_pretrained` class method.
Args:
save_directory (str): Directory to which to save.
"""
# Save context tokenizer
context_save_dir = os.path.join(save_directory, 'context_tokenizer')
self.context_tokenizer.save_pretrained(context_save_dir, **kwargs)
# Save text tokenizer
text_save_dir = os.path.join(save_directory, 'text_tokenizer')
self.text_tokenizer.save_pretrained(text_save_dir, **kwargs)
# Save tokenizer config
tokenizer_config = {
"tokenizer_class": self.__class__.__name__,
}
with open(os.path.join(save_directory, 'tokenizer_config.json'), 'w', encoding='utf-8') as f:
json.dump(tokenizer_config, f, ensure_ascii=False)
def __call__(
self,
context: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
return_tensors: Optional[str] = None,
**kwargs
) -> BatchFeature:
"""
Main method to prepare inputs for the CoEncoder model.
Args:
context: Context text input.
text: Main text input.
return_tensors: Type of tensors to return.
Returns:
BatchFeature: A BatchFeature object containing model inputs.
"""
if context is None and text is None:
raise ValueError("You must provide either context or text.")
features = {}
if context is not None:
context_features = self.context_tokenizer(
context,
return_tensors=return_tensors,
**kwargs
)
features.update({f"context_{k}": v for k, v in context_features.items()})
if text is not None:
text_features = self.text_tokenizer(
text,
return_tensors=return_tensors,
**kwargs
)
features.update({k: v for k, v in text_features.items()})
return BatchFeature(data=features, tensor_type=return_tensors)
def pad(
self,
encoded_inputs,
padding=True,
max_length=None,
return_tensors=None,
**kwargs
):
"""
Pads the encoded inputs to the maximum length in the batch.
Args:
encoded_inputs: A list of dictionaries containing context and text features.
padding: Whether to pad sequences.
max_length: Maximum length for padding.
return_tensors: Type of tensors to return.
Returns:
A dictionary with padded sequences.
"""
# Separate context and text features
context_features = []
text_features = []
for feature in encoded_inputs:
# Extract context features
context_feature = {
k[len("context_"):]: v
for k, v in feature.items()
if k.startswith("context_")
}
if context_feature:
context_features.append(context_feature)
# Extract text features
text_feature = {
k: v
for k, v in feature.items()
if not k.startswith("context_")
}
if text_feature:
text_features.append(text_feature)
# Pad context features
if context_features:
context_padded = self.context_tokenizer.pad(
context_features,
padding=padding,
max_length=max_length,
return_tensors=return_tensors,
**kwargs.get("context_kwargs", {})
)
context_padded = {f"context_{k}": v for k, v in context_padded.items()}
else:
context_padded = {}
# Pad text features
if text_features:
text_padded = self.text_tokenizer.pad(
text_features,
padding=padding,
max_length=max_length,
return_tensors=return_tensors,
**kwargs.get("text_kwargs", {})
)
text_padded = {k: v for k, v in text_padded.items()}
else:
text_padded = {}
# Combine padded features
padded_features = {**context_padded, **text_padded}
return BatchFeature(data=padded_features, tensor_type=return_tensors)
def batch_decode(self, *args, **kwargs):
"""
Calls the batch_decode method of the text_tokenizer.
"""
return self.text_tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
Calls the decode method of the text_tokenizer.
"""
return self.text_tokenizer.decode(*args, **kwargs)
@property
def model_input_names(self):
"""
Returns the model input names.
"""
return list(dict.fromkeys(self.context_tokenizer.model_input_names + self.text_tokenizer.model_input_names))