|
|
|
"""Tokenization classes for CoEncoder"""
|
|
|
|
import os
|
|
import json
|
|
from typing import List, Union, Optional
|
|
from transformers import AutoTokenizer
|
|
from transformers.processing_utils import ProcessorMixin
|
|
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
|
|
from transformers.utils import logging
|
|
from transformers.feature_extraction_utils import BatchFeature
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
class CoEncoderDualTokenizer(ProcessorMixin):
|
|
r"""
|
|
CoEncoderDualTokenizer is tokenizer for the CoEncoder model. It processes context and main text.
|
|
|
|
Args:
|
|
context_tokenizer ([`PreTrainedTokenizer`]):
|
|
The tokenizer for context.
|
|
text_tokenizer ([`PreTrainedTokenizer`]):
|
|
The tokenizer for main text.
|
|
"""
|
|
|
|
attributes = ["context_tokenizer", "text_tokenizer"]
|
|
context_tokenizer_class = "AutoTokenizer"
|
|
text_tokenizer_class = "AutoTokenizer"
|
|
|
|
def __init__(self, context_tokenizer=None, text_tokenizer=None):
|
|
super().__init__(context_tokenizer, text_tokenizer)
|
|
|
|
@classmethod
|
|
def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs):
|
|
"""
|
|
Load both context and text tokenizers from a given repository.
|
|
|
|
Args:
|
|
pretrained_model_name_or_path (str): The name or path of the Hugging Face repository.
|
|
|
|
Returns:
|
|
CoEncoderDualTokenizer: An instance of the tokenizer class.
|
|
"""
|
|
|
|
context_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path,
|
|
subfolder="context_tokenizer",
|
|
**kwargs
|
|
)
|
|
|
|
|
|
text_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path,
|
|
subfolder="text_tokenizer",
|
|
**kwargs
|
|
)
|
|
|
|
|
|
return cls(context_tokenizer=context_tokenizer, text_tokenizer=text_tokenizer)
|
|
|
|
def save_pretrained(self, save_directory: str, **kwargs):
|
|
"""
|
|
Save the tokenizer to a directory, so that it can be reloaded using the `from_pretrained` class method.
|
|
|
|
Args:
|
|
save_directory (str): Directory to which to save.
|
|
"""
|
|
|
|
context_save_dir = os.path.join(save_directory, 'context_tokenizer')
|
|
self.context_tokenizer.save_pretrained(context_save_dir, **kwargs)
|
|
|
|
|
|
text_save_dir = os.path.join(save_directory, 'text_tokenizer')
|
|
self.text_tokenizer.save_pretrained(text_save_dir, **kwargs)
|
|
|
|
|
|
tokenizer_config = {
|
|
"tokenizer_class": self.__class__.__name__,
|
|
}
|
|
|
|
with open(os.path.join(save_directory, 'tokenizer_config.json'), 'w', encoding='utf-8') as f:
|
|
json.dump(tokenizer_config, f, ensure_ascii=False)
|
|
|
|
def __call__(
|
|
self,
|
|
context: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
|
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
|
|
return_tensors: Optional[str] = None,
|
|
**kwargs
|
|
) -> BatchFeature:
|
|
"""
|
|
Main method to prepare inputs for the CoEncoder model.
|
|
|
|
Args:
|
|
context: Context text input.
|
|
text: Main text input.
|
|
return_tensors: Type of tensors to return.
|
|
|
|
Returns:
|
|
BatchFeature: A BatchFeature object containing model inputs.
|
|
"""
|
|
if context is None and text is None:
|
|
raise ValueError("You must provide either context or text.")
|
|
|
|
features = {}
|
|
|
|
if context is not None:
|
|
context_features = self.context_tokenizer(
|
|
context,
|
|
return_tensors=return_tensors,
|
|
**kwargs
|
|
)
|
|
features.update({f"context_{k}": v for k, v in context_features.items()})
|
|
|
|
if text is not None:
|
|
text_features = self.text_tokenizer(
|
|
text,
|
|
return_tensors=return_tensors,
|
|
**kwargs
|
|
)
|
|
features.update({k: v for k, v in text_features.items()})
|
|
|
|
return BatchFeature(data=features, tensor_type=return_tensors)
|
|
|
|
def pad(
|
|
self,
|
|
encoded_inputs,
|
|
padding=True,
|
|
max_length=None,
|
|
return_tensors=None,
|
|
**kwargs
|
|
):
|
|
"""
|
|
Pads the encoded inputs to the maximum length in the batch.
|
|
|
|
Args:
|
|
encoded_inputs: A list of dictionaries containing context and text features.
|
|
padding: Whether to pad sequences.
|
|
max_length: Maximum length for padding.
|
|
return_tensors: Type of tensors to return.
|
|
|
|
Returns:
|
|
A dictionary with padded sequences.
|
|
"""
|
|
|
|
context_features = []
|
|
text_features = []
|
|
|
|
for feature in encoded_inputs:
|
|
|
|
context_feature = {
|
|
k[len("context_"):]: v
|
|
for k, v in feature.items()
|
|
if k.startswith("context_")
|
|
}
|
|
if context_feature:
|
|
context_features.append(context_feature)
|
|
|
|
text_feature = {
|
|
k: v
|
|
for k, v in feature.items()
|
|
if not k.startswith("context_")
|
|
}
|
|
if text_feature:
|
|
text_features.append(text_feature)
|
|
|
|
|
|
if context_features:
|
|
context_padded = self.context_tokenizer.pad(
|
|
context_features,
|
|
padding=padding,
|
|
max_length=max_length,
|
|
return_tensors=return_tensors,
|
|
**kwargs.get("context_kwargs", {})
|
|
)
|
|
context_padded = {f"context_{k}": v for k, v in context_padded.items()}
|
|
else:
|
|
context_padded = {}
|
|
|
|
|
|
if text_features:
|
|
text_padded = self.text_tokenizer.pad(
|
|
text_features,
|
|
padding=padding,
|
|
max_length=max_length,
|
|
return_tensors=return_tensors,
|
|
**kwargs.get("text_kwargs", {})
|
|
)
|
|
text_padded = {k: v for k, v in text_padded.items()}
|
|
else:
|
|
text_padded = {}
|
|
|
|
|
|
padded_features = {**context_padded, **text_padded}
|
|
|
|
return BatchFeature(data=padded_features, tensor_type=return_tensors)
|
|
|
|
def batch_decode(self, *args, **kwargs):
|
|
"""
|
|
Calls the batch_decode method of the text_tokenizer.
|
|
"""
|
|
return self.text_tokenizer.batch_decode(*args, **kwargs)
|
|
|
|
def decode(self, *args, **kwargs):
|
|
"""
|
|
Calls the decode method of the text_tokenizer.
|
|
"""
|
|
return self.text_tokenizer.decode(*args, **kwargs)
|
|
|
|
@property
|
|
def model_input_names(self):
|
|
"""
|
|
Returns the model input names.
|
|
"""
|
|
return list(dict.fromkeys(self.context_tokenizer.model_input_names + self.text_tokenizer.model_input_names))
|
|
|