sudy-super commited on
Commit
aee9709
1 Parent(s): ca19339

Upload model and tokenizers

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ context_tokenizer/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ text_tokenizer/tokenizer.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./co_output_model",
3
+ "architectures": [
4
+ "CoEncoderForConditionalGeneration"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_co_encoder.CoEncoderConfig",
8
+ "AutoModelForCausalLM": "modeling_co_encoder.CoEncoderForConditionalGeneration"
9
+ },
10
+ "begin_of_context_token_id": 128002,
11
+ "connector_hidden_act": "gelu",
12
+ "context_config": {
13
+ "_attn_implementation_autoset": false,
14
+ "_name_or_path": "Qwen/Qwen2-0.5B",
15
+ "add_cross_attention": false,
16
+ "architectures": [
17
+ "Qwen2ForCausalLM"
18
+ ],
19
+ "attention_dropout": 0.0,
20
+ "bad_words_ids": null,
21
+ "begin_suppress_tokens": null,
22
+ "bos_token_id": 151643,
23
+ "chunk_size_feed_forward": 0,
24
+ "cross_attention_hidden_size": null,
25
+ "decoder_start_token_id": null,
26
+ "diversity_penalty": 0.0,
27
+ "do_sample": false,
28
+ "early_stopping": false,
29
+ "encoder_no_repeat_ngram_size": 0,
30
+ "eos_token_id": 151643,
31
+ "exponential_decay_length_penalty": null,
32
+ "finetuning_task": null,
33
+ "forced_bos_token_id": null,
34
+ "forced_eos_token_id": null,
35
+ "hidden_act": "silu",
36
+ "hidden_size": 896,
37
+ "id2label": {
38
+ "0": "LABEL_0",
39
+ "1": "LABEL_1"
40
+ },
41
+ "initializer_range": 0.02,
42
+ "intermediate_size": 4864,
43
+ "is_decoder": false,
44
+ "is_encoder_decoder": false,
45
+ "label2id": {
46
+ "LABEL_0": 0,
47
+ "LABEL_1": 1
48
+ },
49
+ "length_penalty": 1.0,
50
+ "max_length": 20,
51
+ "max_position_embeddings": 131072,
52
+ "max_window_layers": 24,
53
+ "min_length": 0,
54
+ "model_type": "qwen2",
55
+ "no_repeat_ngram_size": 0,
56
+ "num_attention_heads": 14,
57
+ "num_beam_groups": 1,
58
+ "num_beams": 1,
59
+ "num_hidden_layers": 24,
60
+ "num_key_value_heads": 2,
61
+ "num_return_sequences": 1,
62
+ "output_attentions": false,
63
+ "output_hidden_states": false,
64
+ "output_scores": false,
65
+ "pad_token_id": null,
66
+ "prefix": null,
67
+ "problem_type": null,
68
+ "pruned_heads": {},
69
+ "remove_invalid_values": false,
70
+ "repetition_penalty": 1.0,
71
+ "return_dict": true,
72
+ "return_dict_in_generate": false,
73
+ "rms_norm_eps": 1e-06,
74
+ "rope_scaling": null,
75
+ "rope_theta": 1000000.0,
76
+ "sep_token_id": null,
77
+ "sliding_window": null,
78
+ "suppress_tokens": null,
79
+ "task_specific_params": null,
80
+ "temperature": 1.0,
81
+ "tf_legacy_loss": false,
82
+ "tie_encoder_decoder": false,
83
+ "tie_word_embeddings": true,
84
+ "tokenizer_class": null,
85
+ "top_k": 50,
86
+ "top_p": 1.0,
87
+ "torch_dtype": "bfloat16",
88
+ "torchscript": false,
89
+ "typical_p": 1.0,
90
+ "use_bfloat16": false,
91
+ "use_cache": true,
92
+ "use_sliding_window": false,
93
+ "vocab_size": 151936
94
+ },
95
+ "context_feature_layer": -2,
96
+ "context_feature_select_strategy": "default",
97
+ "end_of_context_token_id": 128003,
98
+ "ignore_index": -100,
99
+ "model_type": "co_encoder",
100
+ "projector_hidden_act": "gelu",
101
+ "text_config": {
102
+ "_name_or_path": "meta-llama/Llama-3.1-8B-Instruct",
103
+ "architectures": [
104
+ "LlamaForCausalLM"
105
+ ],
106
+ "bos_token_id": 128000,
107
+ "eos_token_id": [
108
+ 128001,
109
+ 128008,
110
+ 128009
111
+ ],
112
+ "intermediate_size": 14336,
113
+ "max_position_embeddings": 131072,
114
+ "model_type": "llama",
115
+ "num_key_value_heads": 8,
116
+ "rms_norm_eps": 1e-05,
117
+ "rope_scaling": {
118
+ "factor": 8.0,
119
+ "high_freq_factor": 4.0,
120
+ "low_freq_factor": 1.0,
121
+ "original_max_position_embeddings": 8192,
122
+ "rope_type": "llama3"
123
+ },
124
+ "rope_theta": 500000.0,
125
+ "torch_dtype": "bfloat16",
126
+ "vocab_size": 128256
127
+ },
128
+ "tie_word_embeddings": false,
129
+ "torch_dtype": "bfloat16",
130
+ "transformers_version": "4.47.0.dev0"
131
+ }
configuration_co_encoder.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ """CoEncoder model configuration"""
3
+
4
+ from transformers.configuration_utils import PretrainedConfig
5
+ from transformers.utils import logging
6
+ from transformers import CONFIG_MAPPING
7
+
8
+ logger = logging.get_logger(__name__)
9
+
10
+
11
+ class CoEncoderConfig(PretrainedConfig):
12
+ r"""
13
+ """
14
+
15
+ model_type = "co_encoder"
16
+
17
+ def __init__(
18
+ self,
19
+ context_config=None,
20
+ text_config=None,
21
+ ignore_index=-100,
22
+ connector_hidden_act="gelu",
23
+ context_feature_layer=-2,
24
+ context_feature_select_strategy="default",
25
+ begin_of_context_token_id=None,
26
+ end_of_context_token_id=None,
27
+ tie_word_embeddings=False,
28
+ **kwargs,
29
+ ):
30
+ self.ignore_index = ignore_index
31
+ self.connector_hidden_act = connector_hidden_act
32
+ self.context_feature_layer = context_feature_layer
33
+ self.context_feature_select_strategy = context_feature_select_strategy
34
+ self.begin_of_context_token_id = begin_of_context_token_id
35
+ self.end_of_context_token_id = end_of_context_token_id
36
+
37
+ if context_feature_select_strategy not in ["default"]:
38
+ raise ValueError(
39
+ "context_feature_select_strategy should be one of 'default'."
40
+ f"Got: {context_feature_select_strategy}"
41
+ )
42
+
43
+ if isinstance(context_config, dict):
44
+ context_config["model_type"] = (
45
+ context_config["model_type"] if "model_type" in context_config else "qwen2"
46
+ )
47
+ context_config = CONFIG_MAPPING[context_config["model_type"]](**context_config)
48
+
49
+ self.context_config = context_config
50
+
51
+ if isinstance(text_config, dict):
52
+ text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama"
53
+ text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
54
+ elif text_config is None:
55
+ text_config = CONFIG_MAPPING["llama"]()
56
+
57
+ self.text_config = text_config
58
+
59
+ super().__init__(
60
+ tie_word_embeddings=tie_word_embeddings,
61
+ ignore_index=ignore_index,
62
+ connector_hidden_act=connector_hidden_act,
63
+ context_feature_layer=context_feature_layer,
64
+ context_feature_select_strategy=context_feature_select_strategy,
65
+ begin_of_context_token_id=begin_of_context_token_id,
66
+ end_of_context_token_id=end_of_context_token_id,
67
+ **kwargs
68
+ )
context_tokenizer/added_tokens.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "<|endoftext|>": 151643,
3
+ "<|im_end|>": 151645,
4
+ "<|im_start|>": 151644
5
+ }
context_tokenizer/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
context_tokenizer/special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
context_tokenizer/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcfe42da0a4497e8b2b172c1f9f4ec423a46dc12907f4349c55025f670422ba9
3
+ size 11418266
context_tokenizer/tokenizer_config.json ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ }
28
+ },
29
+ "additional_special_tokens": [
30
+ "<|im_start|>",
31
+ "<|im_end|>"
32
+ ],
33
+ "bos_token": null,
34
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
35
+ "clean_up_tokenization_spaces": false,
36
+ "eos_token": "<|endoftext|>",
37
+ "errors": "replace",
38
+ "extra_special_tokens": {},
39
+ "model_max_length": 131072,
40
+ "pad_token": "<|endoftext|>",
41
+ "split_special_tokens": false,
42
+ "tokenizer_class": "Qwen2Tokenizer",
43
+ "unk_token": null
44
+ }
context_tokenizer/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "eos_token_id": [
5
+ 128001,
6
+ 128008,
7
+ 128009
8
+ ],
9
+ "transformers_version": "4.47.0.dev0"
10
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d0de04184a5318130add82db76980315e3cfb153294c11a12cf9e5ca0a12170
3
+ size 4973442402
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f13d5f738211d5954cc424baabdf3a4e1001811d63aaf5b33b1ac5453c067ad7
3
+ size 4999804248
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c1cd2162ea622494ba04cd4585cf4b6778740e56326a7f3b07a6cf9632b2327
3
+ size 4915917680
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66d1f965204f37fcd6abf68368fb3a806c1c8cd03089d2a36b4844372187ff6b
3
+ size 2476814440
model.safetensors.index.json ADDED
@@ -0,0 +1,602 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 17365900546
4
+ },
5
+ "weight_map": {
6
+ "connector.dynamic_pooling.scale_param": "model-00001-of-00004.safetensors",
7
+ "connector.dynamic_pooling.size_estimation_attention.k_proj.weight": "model-00001-of-00004.safetensors",
8
+ "connector.dynamic_pooling.size_estimation_attention.o_proj.weight": "model-00001-of-00004.safetensors",
9
+ "connector.dynamic_pooling.size_estimation_attention.q_proj.weight": "model-00001-of-00004.safetensors",
10
+ "connector.dynamic_pooling.size_estimation_attention.v_proj.weight": "model-00001-of-00004.safetensors",
11
+ "connector.dynamic_pooling.weighted_pooling_attention.k_proj.weight": "model-00001-of-00004.safetensors",
12
+ "connector.dynamic_pooling.weighted_pooling_attention.o_proj.weight": "model-00001-of-00004.safetensors",
13
+ "connector.dynamic_pooling.weighted_pooling_attention.q_proj.weight": "model-00001-of-00004.safetensors",
14
+ "connector.dynamic_pooling.weighted_pooling_attention.v_proj.weight": "model-00001-of-00004.safetensors",
15
+ "connector.linear_1.bias": "model-00001-of-00004.safetensors",
16
+ "connector.linear_1.weight": "model-00001-of-00004.safetensors",
17
+ "connector.linear_2.bias": "model-00001-of-00004.safetensors",
18
+ "connector.linear_2.weight": "model-00001-of-00004.safetensors",
19
+ "context_tower.tower.lm_head.weight": "model-00001-of-00004.safetensors",
20
+ "context_tower.tower.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
21
+ "context_tower.tower.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "context_tower.tower.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
23
+ "context_tower.tower.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
24
+ "context_tower.tower.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
25
+ "context_tower.tower.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
26
+ "context_tower.tower.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
27
+ "context_tower.tower.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
28
+ "context_tower.tower.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
29
+ "context_tower.tower.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
30
+ "context_tower.tower.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
31
+ "context_tower.tower.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
32
+ "context_tower.tower.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
33
+ "context_tower.tower.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
34
+ "context_tower.tower.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
35
+ "context_tower.tower.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
36
+ "context_tower.tower.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
37
+ "context_tower.tower.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
38
+ "context_tower.tower.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
39
+ "context_tower.tower.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
40
+ "context_tower.tower.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
41
+ "context_tower.tower.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
42
+ "context_tower.tower.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
43
+ "context_tower.tower.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
44
+ "context_tower.tower.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
45
+ "context_tower.tower.model.layers.10.input_layernorm.weight": "model-00001-of-00004.safetensors",
46
+ "context_tower.tower.model.layers.10.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
47
+ "context_tower.tower.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
48
+ "context_tower.tower.model.layers.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
49
+ "context_tower.tower.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
50
+ "context_tower.tower.model.layers.10.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
51
+ "context_tower.tower.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
52
+ "context_tower.tower.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
53
+ "context_tower.tower.model.layers.10.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
54
+ "context_tower.tower.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
55
+ "context_tower.tower.model.layers.10.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
56
+ "context_tower.tower.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
57
+ "context_tower.tower.model.layers.11.input_layernorm.weight": "model-00001-of-00004.safetensors",
58
+ "context_tower.tower.model.layers.11.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
59
+ "context_tower.tower.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
60
+ "context_tower.tower.model.layers.11.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
61
+ "context_tower.tower.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
62
+ "context_tower.tower.model.layers.11.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
63
+ "context_tower.tower.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
64
+ "context_tower.tower.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
65
+ "context_tower.tower.model.layers.11.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
66
+ "context_tower.tower.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
67
+ "context_tower.tower.model.layers.11.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
68
+ "context_tower.tower.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
69
+ "context_tower.tower.model.layers.12.input_layernorm.weight": "model-00001-of-00004.safetensors",
70
+ "context_tower.tower.model.layers.12.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
71
+ "context_tower.tower.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
72
+ "context_tower.tower.model.layers.12.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
73
+ "context_tower.tower.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
74
+ "context_tower.tower.model.layers.12.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
75
+ "context_tower.tower.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
76
+ "context_tower.tower.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
77
+ "context_tower.tower.model.layers.12.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
78
+ "context_tower.tower.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
79
+ "context_tower.tower.model.layers.12.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
80
+ "context_tower.tower.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
81
+ "context_tower.tower.model.layers.13.input_layernorm.weight": "model-00001-of-00004.safetensors",
82
+ "context_tower.tower.model.layers.13.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
83
+ "context_tower.tower.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
84
+ "context_tower.tower.model.layers.13.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
85
+ "context_tower.tower.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
86
+ "context_tower.tower.model.layers.13.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
87
+ "context_tower.tower.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
88
+ "context_tower.tower.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
89
+ "context_tower.tower.model.layers.13.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
90
+ "context_tower.tower.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
91
+ "context_tower.tower.model.layers.13.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
92
+ "context_tower.tower.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
93
+ "context_tower.tower.model.layers.14.input_layernorm.weight": "model-00001-of-00004.safetensors",
94
+ "context_tower.tower.model.layers.14.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
95
+ "context_tower.tower.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
96
+ "context_tower.tower.model.layers.14.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
97
+ "context_tower.tower.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
98
+ "context_tower.tower.model.layers.14.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
99
+ "context_tower.tower.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
100
+ "context_tower.tower.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
101
+ "context_tower.tower.model.layers.14.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
102
+ "context_tower.tower.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
103
+ "context_tower.tower.model.layers.14.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
104
+ "context_tower.tower.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
105
+ "context_tower.tower.model.layers.15.input_layernorm.weight": "model-00001-of-00004.safetensors",
106
+ "context_tower.tower.model.layers.15.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
107
+ "context_tower.tower.model.layers.15.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
108
+ "context_tower.tower.model.layers.15.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
109
+ "context_tower.tower.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
110
+ "context_tower.tower.model.layers.15.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
111
+ "context_tower.tower.model.layers.15.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
112
+ "context_tower.tower.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
113
+ "context_tower.tower.model.layers.15.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
114
+ "context_tower.tower.model.layers.15.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
115
+ "context_tower.tower.model.layers.15.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
116
+ "context_tower.tower.model.layers.15.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
117
+ "context_tower.tower.model.layers.16.input_layernorm.weight": "model-00001-of-00004.safetensors",
118
+ "context_tower.tower.model.layers.16.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
119
+ "context_tower.tower.model.layers.16.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
120
+ "context_tower.tower.model.layers.16.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
121
+ "context_tower.tower.model.layers.16.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
122
+ "context_tower.tower.model.layers.16.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
123
+ "context_tower.tower.model.layers.16.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
124
+ "context_tower.tower.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
125
+ "context_tower.tower.model.layers.16.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
126
+ "context_tower.tower.model.layers.16.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
127
+ "context_tower.tower.model.layers.16.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
128
+ "context_tower.tower.model.layers.16.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
129
+ "context_tower.tower.model.layers.17.input_layernorm.weight": "model-00001-of-00004.safetensors",
130
+ "context_tower.tower.model.layers.17.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
131
+ "context_tower.tower.model.layers.17.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
132
+ "context_tower.tower.model.layers.17.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
133
+ "context_tower.tower.model.layers.17.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
134
+ "context_tower.tower.model.layers.17.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
135
+ "context_tower.tower.model.layers.17.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
136
+ "context_tower.tower.model.layers.17.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
137
+ "context_tower.tower.model.layers.17.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
138
+ "context_tower.tower.model.layers.17.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
139
+ "context_tower.tower.model.layers.17.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
140
+ "context_tower.tower.model.layers.17.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
141
+ "context_tower.tower.model.layers.18.input_layernorm.weight": "model-00001-of-00004.safetensors",
142
+ "context_tower.tower.model.layers.18.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
143
+ "context_tower.tower.model.layers.18.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
144
+ "context_tower.tower.model.layers.18.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
145
+ "context_tower.tower.model.layers.18.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
146
+ "context_tower.tower.model.layers.18.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
147
+ "context_tower.tower.model.layers.18.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
148
+ "context_tower.tower.model.layers.18.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
149
+ "context_tower.tower.model.layers.18.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
150
+ "context_tower.tower.model.layers.18.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
151
+ "context_tower.tower.model.layers.18.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
152
+ "context_tower.tower.model.layers.18.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
153
+ "context_tower.tower.model.layers.19.input_layernorm.weight": "model-00001-of-00004.safetensors",
154
+ "context_tower.tower.model.layers.19.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
155
+ "context_tower.tower.model.layers.19.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
156
+ "context_tower.tower.model.layers.19.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
157
+ "context_tower.tower.model.layers.19.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
158
+ "context_tower.tower.model.layers.19.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
159
+ "context_tower.tower.model.layers.19.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
160
+ "context_tower.tower.model.layers.19.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
161
+ "context_tower.tower.model.layers.19.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
162
+ "context_tower.tower.model.layers.19.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
163
+ "context_tower.tower.model.layers.19.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
164
+ "context_tower.tower.model.layers.19.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
165
+ "context_tower.tower.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
166
+ "context_tower.tower.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
167
+ "context_tower.tower.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
168
+ "context_tower.tower.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
169
+ "context_tower.tower.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
170
+ "context_tower.tower.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
171
+ "context_tower.tower.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
172
+ "context_tower.tower.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
173
+ "context_tower.tower.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
174
+ "context_tower.tower.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
175
+ "context_tower.tower.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
176
+ "context_tower.tower.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
177
+ "context_tower.tower.model.layers.20.input_layernorm.weight": "model-00001-of-00004.safetensors",
178
+ "context_tower.tower.model.layers.20.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
179
+ "context_tower.tower.model.layers.20.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
180
+ "context_tower.tower.model.layers.20.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
181
+ "context_tower.tower.model.layers.20.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
182
+ "context_tower.tower.model.layers.20.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
183
+ "context_tower.tower.model.layers.20.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
184
+ "context_tower.tower.model.layers.20.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
185
+ "context_tower.tower.model.layers.20.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
186
+ "context_tower.tower.model.layers.20.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
187
+ "context_tower.tower.model.layers.20.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
188
+ "context_tower.tower.model.layers.20.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
189
+ "context_tower.tower.model.layers.21.input_layernorm.weight": "model-00001-of-00004.safetensors",
190
+ "context_tower.tower.model.layers.21.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
191
+ "context_tower.tower.model.layers.21.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
192
+ "context_tower.tower.model.layers.21.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
193
+ "context_tower.tower.model.layers.21.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
194
+ "context_tower.tower.model.layers.21.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
195
+ "context_tower.tower.model.layers.21.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
196
+ "context_tower.tower.model.layers.21.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
197
+ "context_tower.tower.model.layers.21.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
198
+ "context_tower.tower.model.layers.21.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
199
+ "context_tower.tower.model.layers.21.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
200
+ "context_tower.tower.model.layers.21.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
201
+ "context_tower.tower.model.layers.22.input_layernorm.weight": "model-00001-of-00004.safetensors",
202
+ "context_tower.tower.model.layers.22.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
203
+ "context_tower.tower.model.layers.22.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
204
+ "context_tower.tower.model.layers.22.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
205
+ "context_tower.tower.model.layers.22.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
206
+ "context_tower.tower.model.layers.22.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
207
+ "context_tower.tower.model.layers.22.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
208
+ "context_tower.tower.model.layers.22.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
209
+ "context_tower.tower.model.layers.22.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
210
+ "context_tower.tower.model.layers.22.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
211
+ "context_tower.tower.model.layers.22.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
212
+ "context_tower.tower.model.layers.22.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
213
+ "context_tower.tower.model.layers.23.input_layernorm.weight": "model-00001-of-00004.safetensors",
214
+ "context_tower.tower.model.layers.23.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
215
+ "context_tower.tower.model.layers.23.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
216
+ "context_tower.tower.model.layers.23.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
217
+ "context_tower.tower.model.layers.23.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
218
+ "context_tower.tower.model.layers.23.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
219
+ "context_tower.tower.model.layers.23.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
220
+ "context_tower.tower.model.layers.23.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
221
+ "context_tower.tower.model.layers.23.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
222
+ "context_tower.tower.model.layers.23.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
223
+ "context_tower.tower.model.layers.23.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
224
+ "context_tower.tower.model.layers.23.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
225
+ "context_tower.tower.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
226
+ "context_tower.tower.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
227
+ "context_tower.tower.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
228
+ "context_tower.tower.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
229
+ "context_tower.tower.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
230
+ "context_tower.tower.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
231
+ "context_tower.tower.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
232
+ "context_tower.tower.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
233
+ "context_tower.tower.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
234
+ "context_tower.tower.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
235
+ "context_tower.tower.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
236
+ "context_tower.tower.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
237
+ "context_tower.tower.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
238
+ "context_tower.tower.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
239
+ "context_tower.tower.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
240
+ "context_tower.tower.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
241
+ "context_tower.tower.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
242
+ "context_tower.tower.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
243
+ "context_tower.tower.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
244
+ "context_tower.tower.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
245
+ "context_tower.tower.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
246
+ "context_tower.tower.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
247
+ "context_tower.tower.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
248
+ "context_tower.tower.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
249
+ "context_tower.tower.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
250
+ "context_tower.tower.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
251
+ "context_tower.tower.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
252
+ "context_tower.tower.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
253
+ "context_tower.tower.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
254
+ "context_tower.tower.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
255
+ "context_tower.tower.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
256
+ "context_tower.tower.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
257
+ "context_tower.tower.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
258
+ "context_tower.tower.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
259
+ "context_tower.tower.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
260
+ "context_tower.tower.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
261
+ "context_tower.tower.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
262
+ "context_tower.tower.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
263
+ "context_tower.tower.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
264
+ "context_tower.tower.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
265
+ "context_tower.tower.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
266
+ "context_tower.tower.model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
267
+ "context_tower.tower.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
268
+ "context_tower.tower.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
269
+ "context_tower.tower.model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
270
+ "context_tower.tower.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
271
+ "context_tower.tower.model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
272
+ "context_tower.tower.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
273
+ "context_tower.tower.model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
274
+ "context_tower.tower.model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
275
+ "context_tower.tower.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
276
+ "context_tower.tower.model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
277
+ "context_tower.tower.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
278
+ "context_tower.tower.model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
279
+ "context_tower.tower.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
280
+ "context_tower.tower.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
281
+ "context_tower.tower.model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
282
+ "context_tower.tower.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
283
+ "context_tower.tower.model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
284
+ "context_tower.tower.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
285
+ "context_tower.tower.model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
286
+ "context_tower.tower.model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
287
+ "context_tower.tower.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
288
+ "context_tower.tower.model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
289
+ "context_tower.tower.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
290
+ "context_tower.tower.model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
291
+ "context_tower.tower.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
292
+ "context_tower.tower.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
293
+ "context_tower.tower.model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
294
+ "context_tower.tower.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
295
+ "context_tower.tower.model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
296
+ "context_tower.tower.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
297
+ "context_tower.tower.model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors",
298
+ "context_tower.tower.model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
299
+ "context_tower.tower.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
300
+ "context_tower.tower.model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
301
+ "context_tower.tower.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
302
+ "context_tower.tower.model.layers.9.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
303
+ "context_tower.tower.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
304
+ "context_tower.tower.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
305
+ "context_tower.tower.model.layers.9.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
306
+ "context_tower.tower.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
307
+ "context_tower.tower.model.layers.9.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
308
+ "context_tower.tower.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
309
+ "context_tower.tower.model.norm.weight": "model-00001-of-00004.safetensors",
310
+ "language_model.lm_head.weight": "model-00004-of-00004.safetensors",
311
+ "language_model.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
312
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
314
+ "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
315
+ "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
316
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
317
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
318
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
319
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
320
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
321
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
322
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
323
+ "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
324
+ "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
325
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
326
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
327
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
328
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
329
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
330
+ "language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
331
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
332
+ "language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
333
+ "language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
334
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
335
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
336
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
337
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
338
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
339
+ "language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
340
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
341
+ "language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
342
+ "language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
343
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
344
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
345
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
346
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
347
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
348
+ "language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
349
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
350
+ "language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
351
+ "language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
352
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
353
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
354
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
355
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
356
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
357
+ "language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
358
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
359
+ "language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
360
+ "language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
361
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
362
+ "language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
363
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
364
+ "language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
365
+ "language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
366
+ "language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
367
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
368
+ "language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
369
+ "language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
370
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
371
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
372
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
373
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
374
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
375
+ "language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
376
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
377
+ "language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
378
+ "language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
379
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
380
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
381
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
382
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
383
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
384
+ "language_model.model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
385
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
386
+ "language_model.model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
387
+ "language_model.model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
388
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
389
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
390
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
391
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
392
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
393
+ "language_model.model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
394
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
395
+ "language_model.model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
396
+ "language_model.model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
397
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
398
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
399
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
400
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
401
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
402
+ "language_model.model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
403
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
404
+ "language_model.model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
405
+ "language_model.model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
406
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
407
+ "language_model.model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
408
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
409
+ "language_model.model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
410
+ "language_model.model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
411
+ "language_model.model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
412
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
413
+ "language_model.model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
414
+ "language_model.model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
415
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
416
+ "language_model.model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
417
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
418
+ "language_model.model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
419
+ "language_model.model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
420
+ "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
421
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
422
+ "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
423
+ "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
424
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
425
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
426
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
427
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
428
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
429
+ "language_model.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
430
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
431
+ "language_model.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
432
+ "language_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
433
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
434
+ "language_model.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
435
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
436
+ "language_model.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
437
+ "language_model.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
438
+ "language_model.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
439
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
440
+ "language_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
441
+ "language_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
442
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
443
+ "language_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
444
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
445
+ "language_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
446
+ "language_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
447
+ "language_model.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
448
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
449
+ "language_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
450
+ "language_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
451
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
452
+ "language_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
453
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
454
+ "language_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
455
+ "language_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
456
+ "language_model.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
457
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
458
+ "language_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
459
+ "language_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
460
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
461
+ "language_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
462
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
463
+ "language_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
464
+ "language_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
465
+ "language_model.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
466
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
467
+ "language_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
468
+ "language_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
469
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
470
+ "language_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
471
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
472
+ "language_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
473
+ "language_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
474
+ "language_model.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
475
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
476
+ "language_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
477
+ "language_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
478
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
479
+ "language_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
480
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
481
+ "language_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
482
+ "language_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
483
+ "language_model.model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
484
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
485
+ "language_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
486
+ "language_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
487
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
488
+ "language_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
489
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
490
+ "language_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
491
+ "language_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
492
+ "language_model.model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
493
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
494
+ "language_model.model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
495
+ "language_model.model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
496
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
497
+ "language_model.model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
498
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
499
+ "language_model.model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
500
+ "language_model.model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
501
+ "language_model.model.layers.28.input_layernorm.weight": "model-00004-of-00004.safetensors",
502
+ "language_model.model.layers.28.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
503
+ "language_model.model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
504
+ "language_model.model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
505
+ "language_model.model.layers.28.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
506
+ "language_model.model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
507
+ "language_model.model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
508
+ "language_model.model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
509
+ "language_model.model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
510
+ "language_model.model.layers.29.input_layernorm.weight": "model-00004-of-00004.safetensors",
511
+ "language_model.model.layers.29.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
512
+ "language_model.model.layers.29.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
513
+ "language_model.model.layers.29.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
514
+ "language_model.model.layers.29.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
515
+ "language_model.model.layers.29.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
516
+ "language_model.model.layers.29.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
517
+ "language_model.model.layers.29.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
518
+ "language_model.model.layers.29.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
519
+ "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
520
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
521
+ "language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
522
+ "language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
523
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
524
+ "language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
525
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
526
+ "language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
527
+ "language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
528
+ "language_model.model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
529
+ "language_model.model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
530
+ "language_model.model.layers.30.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
531
+ "language_model.model.layers.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
532
+ "language_model.model.layers.30.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
533
+ "language_model.model.layers.30.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
534
+ "language_model.model.layers.30.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
535
+ "language_model.model.layers.30.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
536
+ "language_model.model.layers.30.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
537
+ "language_model.model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
538
+ "language_model.model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
539
+ "language_model.model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
540
+ "language_model.model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
541
+ "language_model.model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
542
+ "language_model.model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
543
+ "language_model.model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
544
+ "language_model.model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
545
+ "language_model.model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
546
+ "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
547
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
548
+ "language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
549
+ "language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
550
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
551
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
552
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
553
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
554
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
555
+ "language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
556
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
557
+ "language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
558
+ "language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
559
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
560
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
561
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
562
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
563
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
564
+ "language_model.model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
565
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
566
+ "language_model.model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
567
+ "language_model.model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
568
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
569
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
570
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
571
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
572
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
573
+ "language_model.model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
574
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
575
+ "language_model.model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
576
+ "language_model.model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
577
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
578
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
579
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
580
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
581
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
582
+ "language_model.model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
583
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
584
+ "language_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
585
+ "language_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
586
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
587
+ "language_model.model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
588
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
589
+ "language_model.model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
590
+ "language_model.model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
591
+ "language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
592
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
593
+ "language_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
594
+ "language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
595
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
596
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
597
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
598
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
599
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
600
+ "language_model.model.norm.weight": "model-00004-of-00004.safetensors"
601
+ }
602
+ }
modeling_co_encoder.py ADDED
@@ -0,0 +1,761 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ """PyTorch CoEncoder model."""
3
+
4
+ import math
5
+ from dataclasses import dataclass
6
+ from typing import List, Optional, Tuple, Union
7
+
8
+ import numpy as np
9
+ import torch
10
+ import torch.utils.checkpoint
11
+ from torch import nn
12
+
13
+ from transformers import PreTrainedModel
14
+ from transformers.activations import ACT2FN
15
+ from transformers.image_processing_utils import select_best_resolution
16
+ from transformers.modeling_outputs import ModelOutput
17
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs, _flash_attention_forward
18
+ from transformers.utils import (
19
+ add_start_docstrings,
20
+ add_start_docstrings_to_model_forward,
21
+ logging,
22
+ replace_return_docstrings,
23
+ is_flash_attn_2_available,
24
+ is_flash_attn_greater_or_equal_2_10
25
+ )
26
+ from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM
27
+ from .configuration_co_encoder import CoEncoderConfig
28
+
29
+
30
+ logger = logging.get_logger(__name__)
31
+
32
+ _CONFIG_FOR_DOC = "CoEncoderConfig"
33
+
34
+
35
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
36
+ """
37
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
38
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
39
+ """
40
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
41
+ if n_rep == 1:
42
+ return hidden_states
43
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
44
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
45
+
46
+
47
+ @dataclass
48
+ class CoEncoderCausalLMOutputWithPast(ModelOutput):
49
+ """
50
+ Base class for CoEncoder causal language model (or autoregressive) outputs.
51
+
52
+ Args:
53
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
54
+ Language modeling loss (for next-token prediction).
55
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
56
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
57
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
58
+ Tuple of `tuple(torch.FloatTensor)` of length `config.context_config.num_layers`, with each tuple having 2 tensors of shape
59
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`)
60
+
61
+ Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
62
+ `past_key_values` input) to speed up sequential decoding.
63
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
64
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
65
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
66
+
67
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
68
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
69
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
70
+ sequence_length)`.
71
+
72
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
73
+ heads.
74
+ context_hidden_states (`torch.FloatTensor`, *optional*):
75
+ A `torch.FloatTensor` of size (batch_size, sequence_length, hidden_size)`.
76
+ context_hidden_states of the model produced by the context encoder and after projecting the last hidden state.
77
+ """
78
+
79
+ loss: Optional[torch.FloatTensor] = None
80
+ logits: torch.FloatTensor = None
81
+ past_key_values: Optional[List[torch.FloatTensor]] = None
82
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
83
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
84
+ context_hidden_states: Optional[torch.FloatTensor] = None
85
+
86
+
87
+ class CoEncoderDynamicAttention(nn.Module):
88
+ """
89
+ Attention mechanism adapted for dynamic output size based on Mistral's architecture. This attention layer computes
90
+ the output attention scores which are used to determine the pooling size dynamically.
91
+ """
92
+
93
+ def __init__(self, config: CoEncoderConfig):
94
+ super().__init__()
95
+
96
+ self.hidden_size = config.context_config.hidden_size
97
+ self.num_heads = config.context_config.num_attention_heads
98
+ self.head_dim = getattr(config.context_config, "head_dim", self.hidden_size // self.num_heads)
99
+ self.num_key_value_heads = config.context_config.num_key_value_heads
100
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
101
+
102
+ # Query, Key, Value, and Output Projections
103
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
104
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
105
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
106
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, 1, bias=False)
107
+
108
+ def forward(
109
+ self,
110
+ hidden_states: torch.Tensor,
111
+ attention_mask: Optional[torch.Tensor] = None,
112
+ output_attentions: bool = False,
113
+ ):
114
+ # Get input dimensions
115
+ bsz, seq_len, hidden_size = hidden_states.size()
116
+
117
+ # Query, Key, Value projections
118
+ query_states = self.q_proj(hidden_states)
119
+ key_states = self.k_proj(hidden_states)
120
+ value_states = self.v_proj(hidden_states)
121
+
122
+ # Reshape and transpose to [batch_size, num_heads, seq_len, head_dim]
123
+ query_states = query_states.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
124
+ key_states = key_states.view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
125
+ value_states = value_states.view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
126
+
127
+ # Repeat key and value states for multi-head attention
128
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
129
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
130
+
131
+ # Compute attention scores
132
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
133
+
134
+ if attention_mask is not None: # no matter the length, we just slice it
135
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
136
+ attn_weights = attn_weights + causal_mask
137
+
138
+ # Apply softmax to get attention probabilities
139
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
140
+
141
+ # Apply attention to values
142
+ attn_output = torch.matmul(attn_weights, value_states)
143
+
144
+ # Reshape attention output
145
+ attn_output = attn_output.transpose(1, 2).contiguous()
146
+ attn_output = attn_output.reshape(bsz, seq_len, -1)
147
+
148
+ # Project to output dimension
149
+ attn_output = self.o_proj(attn_output)
150
+
151
+ if not output_attentions:
152
+ attn_weights = None
153
+
154
+ return attn_output, attn_weights
155
+
156
+
157
+ class CoEncoderDynamicFlashAttention2(CoEncoderDynamicAttention):
158
+ def __init__(self, config: CoEncoderConfig):
159
+ super().__init__(config)
160
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
161
+ self.is_causal = False # Assuming non-causal attention for this context
162
+ self.config = config
163
+
164
+ def forward(
165
+ self,
166
+ hidden_states: torch.Tensor,
167
+ attention_mask: Optional[torch.Tensor] = None,
168
+ output_attentions: bool = False,
169
+ ):
170
+ output_attentions = False
171
+
172
+ # Get input dimensions
173
+ bsz, seq_len, hidden_size = hidden_states.size()
174
+ q_len = seq_len
175
+
176
+ query_states = self.q_proj(hidden_states)
177
+ key_states = self.k_proj(hidden_states)
178
+ value_states = self.v_proj(hidden_states)
179
+
180
+ query_states = query_states.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
181
+ key_states = key_states.view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
182
+ value_states = value_states.view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
183
+
184
+ # Repeat key and value states for multi-head attention
185
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
186
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
187
+
188
+ input_dtype = query_states.dtype
189
+ if input_dtype == torch.float32:
190
+ if torch.is_autocast_enabled():
191
+ target_dtype = torch.get_autocast_gpu_dtype()
192
+ # Handle the case where the model is quantized
193
+ elif hasattr(self.config, "_pre_quantization_dtype"):
194
+ target_dtype = self.config._pre_quantization_dtype
195
+ else:
196
+ target_dtype = self.q_proj.weight.dtype
197
+
198
+ logger.warning_once(
199
+ f"The input hidden states seem to be silently casted in float32, which might be related to"
200
+ f" upcasted embedding or layer norm layers in float32. Casting back the input to {target_dtype}."
201
+ )
202
+
203
+ query_states = query_states.to(target_dtype)
204
+ key_states = key_states.to(target_dtype)
205
+ value_states = value_states.to(target_dtype)
206
+
207
+ # Define attention_mask assuming all positions are valid
208
+ # because flash_attn does not support custom attention_mask
209
+ attention_mask = None
210
+
211
+ # Define other required variables
212
+ position_ids = None
213
+ dropout_rate = getattr(self.config.context_config, "attention_dropout", 0.0)
214
+
215
+ attn_output = _flash_attention_forward(
216
+ query_states,
217
+ key_states,
218
+ value_states,
219
+ attention_mask,
220
+ q_len,
221
+ position_ids=position_ids,
222
+ dropout=dropout_rate,
223
+ sliding_window=getattr(self, "sliding_window", None),
224
+ use_top_left_mask=self._flash_attn_uses_top_left_mask,
225
+ is_causal=self.is_causal,
226
+ )
227
+
228
+ attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
229
+ attn_output = self.o_proj(attn_output)
230
+
231
+ if not output_attentions:
232
+ attn_weights = None
233
+
234
+ return attn_output, attn_weights
235
+
236
+
237
+ class CoEncoderDynamicWeightedAvgPool1d(nn.Module):
238
+ """
239
+ A module that dynamically determines the output size based on input
240
+ and performs weighted average pooling with separate attention mechanisms
241
+ for output size estimation and weighted pooling.
242
+ """
243
+ def __init__(self, config, output_size_min=32, output_size_max=131072):
244
+ super().__init__()
245
+ # Attention mechanism for estimating output size
246
+ self.size_estimation_attention = CoEncoderDynamicFlashAttention2(config)
247
+ # Attention mechanism for weighted pooling
248
+ self.weighted_pooling_attention = CoEncoderDynamicFlashAttention2(config)
249
+ self.output_size_min = output_size_min
250
+ self.output_size_max = (
251
+ config.context_config.max_position_embeddings if config.context_config.max_position_embeddings is not None else output_size_max
252
+ )
253
+ self.scale_param = nn.Parameter(torch.tensor(0.01))
254
+
255
+ def forward(self, hidden_states):
256
+ """
257
+ Args:
258
+ x: Input tensor of shape (batch_size, seq_len, hidden_size)
259
+
260
+ Returns:
261
+ Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
262
+ - pooled_output: Padded tensor of compressed sequences (batch_size, max_pooled_len, hidden_size)
263
+ - attention_mask: Binary mask indicating valid tokens (batch_size, max_pooled_len)
264
+ - dynamic_output_sizes: Dynamic output sizes for each batch (batch_size,)
265
+ """
266
+ batch_size, seq_len, hidden_size = hidden_states.size()
267
+ device = hidden_states.device
268
+
269
+ # Estimate output size using attention mechanism
270
+ # attn_output_size: (batch_size, seq_len, 1)
271
+ attn_output_size, _ = self.size_estimation_attention(hidden_states)
272
+
273
+ # Calculate dynamic output sizes for each batch item
274
+ # (batch_size, seq_len, 1) -> (batch_size, 1)
275
+ batch_attn_means = torch.sigmoid(attn_output_size).mean(dim=1)
276
+ scaled_batch_means = batch_attn_means * self.scale_param.to(batch_attn_means.dtype)
277
+
278
+ # Calculate dynamic output sizes (batch_size,)
279
+ dynamic_output_sizes = (
280
+ (scaled_batch_means * (self.output_size_max - self.output_size_min)) + self.output_size_min
281
+ ).int().squeeze(-1)
282
+
283
+ # Get the maximum output size across the batch
284
+ max_pooled_len = dynamic_output_sizes.max().item()
285
+
286
+ # Compute attention weights for weighted pooling
287
+ # attn_output_weights: (batch_size, seq_len, 1)
288
+ attn_output_weights, _ = self.weighted_pooling_attention(hidden_states)
289
+ # Normalize with sigmoid function for use as weights
290
+ # attention_weights: (batch_size, seq_len)
291
+ attention_weights = torch.sigmoid(attn_output_weights).squeeze(-1)
292
+
293
+ # Initialize output tensors
294
+ # pooled_output: (batch_size, max_pooled_len, hidden_size)
295
+ pooled_output = torch.zeros(batch_size, max_pooled_len, hidden_size, device=device, dtype=hidden_states.dtype)
296
+ # attention_mask: (batch_size, max_pooled_len)
297
+ attention_mask = torch.zeros(batch_size, max_pooled_len, dtype=torch.bool, device=device)
298
+
299
+ for batch_idx in range(batch_size):
300
+ output_size = dynamic_output_sizes[batch_idx].item()
301
+ item_input = hidden_states[batch_idx] # Shape: (seq_len, hidden_size)
302
+ item_weights = attention_weights[batch_idx] # Shape: (seq_len)
303
+ # print(f"Sequence lenfth of context: {item_input.size(0)}")
304
+ # print(f"Output length: {output_size}")
305
+
306
+ # Perform weighted pooling
307
+ pooled_values = []
308
+ # Split the sequence evenly
309
+ intervals = torch.linspace(0, seq_len, steps=output_size + 1).long()
310
+ for i in range(output_size):
311
+ start = intervals[i].item()
312
+ end = intervals[i + 1].item()
313
+ chunk_input = item_input[start:end] # Shape: (chunk_size, hidden_size)
314
+ chunk_weights = item_weights[start:end] # Shape: (chunk_size)
315
+ if chunk_weights.sum() == 0:
316
+ # If the sum of weights is zero, add a zero vector
317
+ pooled_value = torch.zeros(hidden_size, device=device, dtype=hidden_states.dtype)
318
+ else:
319
+ # Calculate weighted average
320
+ weighted_input = chunk_input * chunk_weights.unsqueeze(-1) # Shape: (chunk_size, hidden_size)
321
+ pooled_value = weighted_input.sum(dim=0) / (chunk_weights.sum() + 1e-8) # Shape: (hidden_size)
322
+ pooled_values.append(pooled_value)
323
+ # Convert the result to a tensor
324
+ pooled_values = torch.stack(pooled_values) # Shape: (output_size, hidden_size)
325
+ # Store the result
326
+ pooled_output[batch_idx, -output_size:] = pooled_values.squeeze(0)
327
+ attention_mask[batch_idx, -output_size:] = True
328
+
329
+ return pooled_output, attention_mask, dynamic_output_sizes
330
+
331
+
332
+ class CoEncoderContextLanguageConnector(nn.Module):
333
+ def __init__(self, config: CoEncoderConfig):
334
+ super().__init__()
335
+
336
+ self.dynamic_pooling = CoEncoderDynamicWeightedAvgPool1d(config)
337
+
338
+ self.linear_1 = nn.Linear(
339
+ config.context_config.hidden_size,
340
+ config.text_config.hidden_size,
341
+ bias=True
342
+ )
343
+ self.act = ACT2FN[config.projector_hidden_act]
344
+ self.linear_2 = nn.Linear(
345
+ config.text_config.hidden_size,
346
+ config.text_config.hidden_size,
347
+ bias=True
348
+ )
349
+
350
+ def forward(self, context_features):
351
+ # context_features: [batch_size, seq_len, hidden_size]
352
+ # Apply dynamic adaptive average pooling with attention
353
+ pooled_output, attention_mask, dynamic_output_sizes = self.dynamic_pooling(
354
+ hidden_states=context_features
355
+ )
356
+ # pooled_output: [batch_size, max_pooled_len, hidden_size]
357
+
358
+ hidden_states = self.linear_1(pooled_output)
359
+ hidden_states = self.act(hidden_states)
360
+ hidden_states = self.linear_2(hidden_states)
361
+
362
+ return hidden_states, attention_mask
363
+
364
+
365
+ class CoEncoderContextTower(nn.Module):
366
+ def __init__(self, config: CoEncoderConfig):
367
+ super().__init__()
368
+
369
+ self.tower = AutoModelForCausalLM.from_config(
370
+ config.context_config,
371
+ attn_implementation="flash_attention_2" if is_flash_attn_2_available() else "eager"
372
+ )
373
+ self.select_layer = config.context_feature_layer
374
+
375
+ def feature_select(self, llm_outputs):
376
+ hidden_states = llm_outputs.hidden_states
377
+ return hidden_states[self.select_layer]
378
+
379
+ def forward(
380
+ self,
381
+ input_ids,
382
+ inputs_embeds,
383
+ attention_mask
384
+ ):
385
+ outputs = self.tower(
386
+ input_ids=input_ids,
387
+ inputs_embeds=inputs_embeds,
388
+ attention_mask=attention_mask,
389
+ output_hidden_states=True
390
+ )
391
+
392
+ features = self.feature_select(outputs)
393
+ return features
394
+
395
+
396
+ class CoEncoderPreTrainedModel(PreTrainedModel):
397
+ config_class = CoEncoderConfig
398
+ base_model_prefix = "model"
399
+ supports_gradient_checkpointing = True
400
+ _no_split_modules = [] # ["CoEncoderContextLanguageConnector", "CoEncoderContextTower"]
401
+ _skip_keys_device_placement = ["past_key_values"]
402
+ _supports_flash_attn_2 = True
403
+ _supports_sdpa = True
404
+ _supports_cache_class = True
405
+ _supports_quantized_cache = True
406
+ _supports_static_cache = True
407
+
408
+ def _init_weights(self, module):
409
+ std = (
410
+ self.config.initializer_range
411
+ if hasattr(self.config, "initializer_range")
412
+ else self.config.text_config.initializer_range
413
+ )
414
+ if isinstance(module, nn.Linear):
415
+ module.weight.data.normal_(mean=0.0, std=std)
416
+ if module.bias is not None:
417
+ module.bias.data.zero_()
418
+ elif isinstance(module, nn.Embedding):
419
+ module.weight.data.normal_(mean=0.0, std=std)
420
+ if module.padding_idx is not None:
421
+ module.weight.data[module.padding_idx].zero_()
422
+
423
+
424
+ class CoEncoderForConditionalGeneration(CoEncoderPreTrainedModel):
425
+ def __init__(self, config: CoEncoderConfig):
426
+ super().__init__(config)
427
+ self.context_tower = CoEncoderContextTower(config)
428
+ self.connector = CoEncoderContextLanguageConnector(config)
429
+
430
+ self.language_model = AutoModelForCausalLM.from_config(
431
+ config.text_config,
432
+ attn_implementation="flash_attention_2" if is_flash_attn_2_available() else "eager"
433
+ )
434
+
435
+ self.vocab_size = config.text_config.vocab_size
436
+ self.ignore_index = config.ignore_index if hasattr(config, 'ignore_index') else -100
437
+ self.begin_of_context_token_id = config.begin_of_context_token_id
438
+ self.end_of_context_token_id = config.end_of_context_token_id
439
+ self.context_eos_token_id = config.context_config.eos_token_id
440
+
441
+ self.post_init()
442
+
443
+ def get_input_embeddings(self):
444
+ return self.language_model.get_input_embeddings()
445
+
446
+ def get_context_input_embeddings(self):
447
+ return self.context_tower.tower.get_input_embeddings()
448
+
449
+ def set_input_embeddings(self, value):
450
+ self.language_model.set_input_embeddings(value)
451
+
452
+ def set_context_input_embeddings(self, value):
453
+ self.context_tower.tower.set_input_embeddings(value)
454
+
455
+ def get_output_embeddings(self):
456
+ return self.language_model.get_output_embeddings()
457
+
458
+ def get_context_output_embeddings(self):
459
+ return self.context_tower.tower.get_output_embeddings()
460
+
461
+ def set_output_embeddings(self, new_embeddings):
462
+ self.language_model.set_output_embeddings(new_embeddings)
463
+
464
+ def set_context_output_embeddings(self, new_embeddings):
465
+ self.context_tower.tower.set_output_embeddings(new_embeddings)
466
+
467
+ def set_decoder(self, decoder):
468
+ self.language_model.set_decoder(decoder)
469
+
470
+ def set_context_encoder(self, decoder):
471
+ self.context_tower.tower.set_decoder(decoder)
472
+
473
+ def get_decoder(self):
474
+ return self.language_model.get_decoder()
475
+
476
+ def get_context_encoder(self):
477
+ return self.context_tower.tower.get_decoder()
478
+
479
+ def tie_weights(self):
480
+ return self.language_model.tie_weights()
481
+
482
+ def context_tie_weights(self):
483
+ return self.context_tower.tower.tie_weights()
484
+
485
+ def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
486
+ model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
487
+ # update vocab size
488
+ self.config.text_config.vocab_size = model_embeds.num_embeddings
489
+ self.vocab_size = model_embeds.num_embeddings
490
+ return model_embeds
491
+
492
+ def _merge_context_features(
493
+ self,
494
+ context_features = None,
495
+ inputs_embeds = None,
496
+ attention_mask = None,
497
+ context_attention_mask=None,
498
+ position_ids=None,
499
+ labels=None,
500
+ ):
501
+ if context_features is None:
502
+ return inputs_embeds, attention_mask, position_ids, labels
503
+
504
+ batch_size, seq_length, embed_dim = inputs_embeds.shape
505
+ context_seq_len = context_features.size(1)
506
+
507
+ # Create embeddings for begin and end of context tokens
508
+ begin_context_embed = self.get_input_embeddings()(torch.tensor(self.begin_of_context_token_id, device=context_features.device))
509
+ end_context_embed = self.get_input_embeddings()(torch.tensor(self.end_of_context_token_id, device=context_features.device))
510
+
511
+ # Determine the actual lengths of context sequences (excluding padding)
512
+ if context_attention_mask is not None:
513
+ # context_attention_mask: [batch_size, context_seq_len, 1]
514
+ context_attention_mask = context_attention_mask.squeeze(-1) # [batch_size, context_seq_len]
515
+ # Sum over sequence length to get actual lengths
516
+ context_lengths = context_attention_mask.sum(dim=1).long() # [batch_size]
517
+ else:
518
+ # If no context_attention_mask is provided, assume full length
519
+ context_lengths = torch.full((batch_size,), context_seq_len, device=context_features.device, dtype=torch.long)
520
+ context_attention_mask = torch.ones(batch_size, context_seq_len, device=context_features.device, dtype=torch.long)
521
+
522
+ # Rearrange context features to include padding at the beginning
523
+ # Identify the maximum context length (excluding padding)
524
+ max_context_length = context_lengths.max().item()
525
+ # Calculate the amount of padding needed for each sample
526
+ padding_lengths = context_seq_len - context_lengths # [batch_size]
527
+
528
+ # Create new context_features with padding at the beginning
529
+ new_context_features = []
530
+ for i in range(batch_size):
531
+ padding_len = padding_lengths[i].item()
532
+ # Create padding embeddings (zeros)
533
+ padding_embed = torch.zeros(padding_len, embed_dim, device=context_features.device, dtype=context_features.dtype)
534
+ # Get actual context features (excluding padding)
535
+ actual_context = context_features[i, padding_len:context_seq_len]
536
+ # Concatenate padding, begin token, actual context, end token
537
+ sample_context = torch.cat([
538
+ padding_embed,
539
+ begin_context_embed.unsqueeze(0),
540
+ actual_context,
541
+ end_context_embed.unsqueeze(0)
542
+ ], dim=0) # [context_seq_len + 2, embed_dim]
543
+ new_context_features.append(sample_context)
544
+ # Stack to create [batch_size, new_context_seq_len, embed_dim]
545
+ context_features = torch.stack(new_context_features, dim=0)
546
+ new_context_seq_len = context_features.size(1)
547
+
548
+ # Update context_attention_mask accordingly
549
+ new_context_attention_mask = []
550
+ for i in range(batch_size):
551
+ padding_len = padding_lengths[i].item()
552
+ # Create padding mask (zeros)
553
+ padding_mask = torch.zeros(padding_len, device=context_features.device, dtype=attention_mask.dtype)
554
+ # Begin and end token masks
555
+ begin_attention = torch.ones(1, device=context_features.device, dtype=attention_mask.dtype)
556
+ end_attention = torch.ones(1, device=context_features.device, dtype=attention_mask.dtype)
557
+ # Actual context attention mask (excluding padding)
558
+ actual_mask = context_attention_mask[i, padding_len:context_seq_len]
559
+ # Concatenate masks
560
+ sample_mask = torch.cat([
561
+ padding_mask,
562
+ begin_attention,
563
+ actual_mask,
564
+ end_attention
565
+ ], dim=0) # [context_seq_len + 2]
566
+ new_context_attention_mask.append(sample_mask)
567
+ # Stack to create [batch_size, new_context_seq_len]
568
+ context_attention_mask = torch.stack(new_context_attention_mask, dim=0)
569
+
570
+ # Concatenate context features with input embeddings
571
+ new_inputs_embeds = torch.cat([context_features, inputs_embeds], dim=1) # [batch_size, total_seq_len, embed_dim]
572
+
573
+ # Concatenate attention masks
574
+ new_attention_mask = torch.cat([context_attention_mask, attention_mask], dim=1)
575
+
576
+ # Create new position_ids
577
+ total_seq_len = new_inputs_embeds.size(1)
578
+ new_position_ids = torch.arange(total_seq_len, device=inputs_embeds.device).unsqueeze(0).expand(batch_size, -1)
579
+
580
+ # Update labels if provided
581
+ if labels is not None:
582
+ # Create ignore labels for context (including padding and special tokens)
583
+ context_labels = torch.full((batch_size, new_context_seq_len), self.ignore_index, device=labels.device, dtype=labels.dtype)
584
+ new_labels = torch.cat([context_labels, labels], dim=1)
585
+ else:
586
+ new_labels = None
587
+
588
+ return new_inputs_embeds, new_attention_mask, new_position_ids, new_labels
589
+
590
+
591
+ @replace_return_docstrings(output_type=CoEncoderCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
592
+ def forward(
593
+ self,
594
+ context_input_ids: torch.LongTensor = None,
595
+ context_inputs_embeds: Optional[torch.FloatTensor] = None,
596
+ context_attention_mask: Optional[torch.Tensor] = None,
597
+ input_ids: torch.LongTensor = None,
598
+ inputs_embeds: Optional[torch.FloatTensor] = None,
599
+ attention_mask: Optional[torch.Tensor] = None,
600
+ position_ids: Optional[torch.LongTensor] = None,
601
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
602
+ labels: Optional[torch.LongTensor] = None,
603
+ use_cache: Optional[bool] = None,
604
+ output_attentions: Optional[bool] = None,
605
+ output_hidden_states: Optional[bool] = None,
606
+ return_dict: Optional[bool] = None,
607
+ ) -> Union[Tuple, CoEncoderCausalLMOutputWithPast]:
608
+ """
609
+ Perform a forward pass through the CoEncoder model, optionally conditioning on context input.
610
+
611
+ Args:
612
+ context_input_ids (`torch.LongTensor` of shape `(batch_size, context_sequence_length)`, *optional*):
613
+ Token IDs of the context input sequence.
614
+ context_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, context_sequence_length, hidden_size)`, *optional*):
615
+ Pre-computed context embeddings. If provided, will not compute embeddings from context_input_ids.
616
+ context_attention_mask (`torch.Tensor` of shape `(batch_size, context_sequence_length)`, *optional*):
617
+ Attention mask for context input sequence.
618
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
619
+ Token IDs of the input sequence.
620
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
621
+ Optionally, instead of passing `input_ids`, you can pass an embedded representation directly.
622
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
623
+ Mask to avoid performing attention on padding token indices.
624
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
625
+ Indices of positions of each input sequence token.
626
+ past_key_values (`List[torch.FloatTensor]`, *optional*):
627
+ Pre-computed hidden-states (key and value tensors) that can be used to speed up sequential decoding.
628
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
629
+ Labels for computing the language modeling loss.
630
+ use_cache (`bool`, *optional*):
631
+ If `True`, past key values will be used to speed up decoding.
632
+ output_attentions (`bool`, *optional*):
633
+ If `True`, return the attention tensors for each layer.
634
+ output_hidden_states (`bool`, *optional*):
635
+ If `True`, return the hidden states of all layers.
636
+ return_dict (`bool`, *optional*):
637
+ If `True`, return a `CoEncoderCausalLMOutputWithPast` instead of a plain tuple.
638
+
639
+ Returns:
640
+ `Union[Tuple, CoEncoderCausalLMOutputWithPast]`: A tuple containing various model outputs or a `CoEncoderCausalLMOutputWithPast` instance.
641
+ The CoEncoderCausalLMOutputWithPast contains the following fields:
642
+ - loss (`torch.FloatTensor`, *optional*): Language modeling loss if labels provided, None otherwise.
643
+ - logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, vocab_size)`): Prediction scores.
644
+ - past_key_values (`List[torch.FloatTensor]`, *optional*): Pre-computed hidden states for efficient decoding.
645
+ - hidden_states (`Tuple[torch.FloatTensor]`, *optional*): Layer hidden states if output_hidden_states=True.
646
+ - attentions (`Tuple[torch.FloatTensor]`, *optional*): Layer attention weights if output_attentions=True.
647
+ - context_hidden_states (`torch.FloatTensor`, *optional*): Final hidden states from the context tower.
648
+ """
649
+
650
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
651
+ output_hidden_states = (
652
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
653
+ )
654
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
655
+
656
+
657
+ all_inputs_none = (
658
+ input_ids is None and
659
+ inputs_embeds is None and
660
+ context_input_ids is None and
661
+ context_inputs_embeds is None
662
+ )
663
+
664
+ if all_inputs_none:
665
+ raise ValueError("You must provide either non-empty input_ids/inputs_embeds or context_input_ids/context_inputs_embeds.")
666
+
667
+ skip_context = False
668
+ if context_input_ids is not None:
669
+ if torch.all(context_input_ids == self.context_eos_token_id):
670
+ skip_context = True
671
+
672
+ if not skip_context and (context_input_ids is not None or context_inputs_embeds is not None):
673
+ context_features = self.context_tower(
674
+ input_ids=context_input_ids,
675
+ inputs_embeds=context_inputs_embeds,
676
+ attention_mask=context_attention_mask,
677
+ )
678
+ context_features, context_attention_mask = self.connector(
679
+ context_features=context_features
680
+ )
681
+ else:
682
+ context_features = None
683
+ context_attention_mask = None
684
+
685
+
686
+ if inputs_embeds is None and input_ids is not None:
687
+ inputs_embeds = self.get_input_embeddings()(input_ids)
688
+
689
+ if inputs_embeds is not None:
690
+ inputs_embeds, attention_mask, position_ids, labels = self._merge_context_features(
691
+ context_features=context_features,
692
+ inputs_embeds=inputs_embeds,
693
+ attention_mask=attention_mask,
694
+ context_attention_mask=context_attention_mask,
695
+ position_ids=position_ids,
696
+ labels=labels,
697
+ )
698
+ else:
699
+ inputs_embeds = context_features
700
+ attention_mask = context_attention_mask
701
+
702
+ outputs = self.language_model(
703
+ attention_mask=attention_mask,
704
+ position_ids=position_ids,
705
+ past_key_values=past_key_values,
706
+ inputs_embeds=inputs_embeds,
707
+ use_cache=use_cache,
708
+ output_attentions=output_attentions,
709
+ output_hidden_states=output_hidden_states,
710
+ return_dict=return_dict,
711
+ )
712
+
713
+ logits = outputs[0]
714
+
715
+ loss = None
716
+ if labels is not None:
717
+ shift_logits = logits[..., :-1, :].contiguous()
718
+ shift_labels = labels[..., 1:].contiguous()
719
+ loss_fct = nn.CrossEntropyLoss(ignore_index=self.ignore_index)
720
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
721
+
722
+ if not return_dict:
723
+ output = (logits,) + outputs[1:]
724
+ return (loss,) + output if loss is not None else output
725
+
726
+ return CoEncoderCausalLMOutputWithPast(
727
+ loss=loss,
728
+ logits=logits,
729
+ past_key_values=outputs.past_key_values,
730
+ hidden_states=outputs.hidden_states,
731
+ attentions=outputs.attentions,
732
+ context_hidden_states=context_features,
733
+ )
734
+
735
+ def prepare_inputs_for_generation(
736
+ self,
737
+ input_ids,
738
+ past_key_values=None,
739
+ attention_mask=None,
740
+ inputs_embeds=None,
741
+ context_features=None,
742
+ **kwargs
743
+ ):
744
+ if past_key_values:
745
+ input_ids = input_ids[:, -1:]
746
+
747
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
748
+ if inputs_embeds is not None and past_key_values is None:
749
+ model_inputs = {"inputs_embeds": inputs_embeds}
750
+ else:
751
+ model_inputs = {"input_ids": input_ids}
752
+
753
+ model_inputs.update(
754
+ {
755
+ "past_key_values": past_key_values,
756
+ "use_cache": kwargs.get("use_cache"),
757
+ "attention_mask": attention_mask,
758
+ "context_features": context_features,
759
+ }
760
+ )
761
+ return model_inputs
text_tokenizer/special_tokens_map.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ }
16
+ }
text_tokenizer/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
3
+ size 17209920
text_tokenizer/tokenizer_config.json ADDED
@@ -0,0 +1,2063 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "128000": {
4
+ "content": "<|begin_of_text|>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "128001": {
12
+ "content": "<|end_of_text|>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "128002": {
20
+ "content": "<|reserved_special_token_0|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "128003": {
28
+ "content": "<|reserved_special_token_1|>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "128004": {
36
+ "content": "<|finetune_right_pad_id|>",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "128005": {
44
+ "content": "<|reserved_special_token_2|>",
45
+ "lstrip": false,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ },
51
+ "128006": {
52
+ "content": "<|start_header_id|>",
53
+ "lstrip": false,
54
+ "normalized": false,
55
+ "rstrip": false,
56
+ "single_word": false,
57
+ "special": true
58
+ },
59
+ "128007": {
60
+ "content": "<|end_header_id|>",
61
+ "lstrip": false,
62
+ "normalized": false,
63
+ "rstrip": false,
64
+ "single_word": false,
65
+ "special": true
66
+ },
67
+ "128008": {
68
+ "content": "<|eom_id|>",
69
+ "lstrip": false,
70
+ "normalized": false,
71
+ "rstrip": false,
72
+ "single_word": false,
73
+ "special": true
74
+ },
75
+ "128009": {
76
+ "content": "<|eot_id|>",
77
+ "lstrip": false,
78
+ "normalized": false,
79
+ "rstrip": false,
80
+ "single_word": false,
81
+ "special": true
82
+ },
83
+ "128010": {
84
+ "content": "<|python_tag|>",
85
+ "lstrip": false,
86
+ "normalized": false,
87
+ "rstrip": false,
88
+ "single_word": false,
89
+ "special": true
90
+ },
91
+ "128011": {
92
+ "content": "<|reserved_special_token_3|>",
93
+ "lstrip": false,
94
+ "normalized": false,
95
+ "rstrip": false,
96
+ "single_word": false,
97
+ "special": true
98
+ },
99
+ "128012": {
100
+ "content": "<|reserved_special_token_4|>",
101
+ "lstrip": false,
102
+ "normalized": false,
103
+ "rstrip": false,
104
+ "single_word": false,
105
+ "special": true
106
+ },
107
+ "128013": {
108
+ "content": "<|reserved_special_token_5|>",
109
+ "lstrip": false,
110
+ "normalized": false,
111
+ "rstrip": false,
112
+ "single_word": false,
113
+ "special": true
114
+ },
115
+ "128014": {
116
+ "content": "<|reserved_special_token_6|>",
117
+ "lstrip": false,
118
+ "normalized": false,
119
+ "rstrip": false,
120
+ "single_word": false,
121
+ "special": true
122
+ },
123
+ "128015": {
124
+ "content": "<|reserved_special_token_7|>",
125
+ "lstrip": false,
126
+ "normalized": false,
127
+ "rstrip": false,
128
+ "single_word": false,
129
+ "special": true
130
+ },
131
+ "128016": {
132
+ "content": "<|reserved_special_token_8|>",
133
+ "lstrip": false,
134
+ "normalized": false,
135
+ "rstrip": false,
136
+ "single_word": false,
137
+ "special": true
138
+ },
139
+ "128017": {
140
+ "content": "<|reserved_special_token_9|>",
141
+ "lstrip": false,
142
+ "normalized": false,
143
+ "rstrip": false,
144
+ "single_word": false,
145
+ "special": true
146
+ },
147
+ "128018": {
148
+ "content": "<|reserved_special_token_10|>",
149
+ "lstrip": false,
150
+ "normalized": false,
151
+ "rstrip": false,
152
+ "single_word": false,
153
+ "special": true
154
+ },
155
+ "128019": {
156
+ "content": "<|reserved_special_token_11|>",
157
+ "lstrip": false,
158
+ "normalized": false,
159
+ "rstrip": false,
160
+ "single_word": false,
161
+ "special": true
162
+ },
163
+ "128020": {
164
+ "content": "<|reserved_special_token_12|>",
165
+ "lstrip": false,
166
+ "normalized": false,
167
+ "rstrip": false,
168
+ "single_word": false,
169
+ "special": true
170
+ },
171
+ "128021": {
172
+ "content": "<|reserved_special_token_13|>",
173
+ "lstrip": false,
174
+ "normalized": false,
175
+ "rstrip": false,
176
+ "single_word": false,
177
+ "special": true
178
+ },
179
+ "128022": {
180
+ "content": "<|reserved_special_token_14|>",
181
+ "lstrip": false,
182
+ "normalized": false,
183
+ "rstrip": false,
184
+ "single_word": false,
185
+ "special": true
186
+ },
187
+ "128023": {
188
+ "content": "<|reserved_special_token_15|>",
189
+ "lstrip": false,
190
+ "normalized": false,
191
+ "rstrip": false,
192
+ "single_word": false,
193
+ "special": true
194
+ },
195
+ "128024": {
196
+ "content": "<|reserved_special_token_16|>",
197
+ "lstrip": false,
198
+ "normalized": false,
199
+ "rstrip": false,
200
+ "single_word": false,
201
+ "special": true
202
+ },
203
+ "128025": {
204
+ "content": "<|reserved_special_token_17|>",
205
+ "lstrip": false,
206
+ "normalized": false,
207
+ "rstrip": false,
208
+ "single_word": false,
209
+ "special": true
210
+ },
211
+ "128026": {
212
+ "content": "<|reserved_special_token_18|>",
213
+ "lstrip": false,
214
+ "normalized": false,
215
+ "rstrip": false,
216
+ "single_word": false,
217
+ "special": true
218
+ },
219
+ "128027": {
220
+ "content": "<|reserved_special_token_19|>",
221
+ "lstrip": false,
222
+ "normalized": false,
223
+ "rstrip": false,
224
+ "single_word": false,
225
+ "special": true
226
+ },
227
+ "128028": {
228
+ "content": "<|reserved_special_token_20|>",
229
+ "lstrip": false,
230
+ "normalized": false,
231
+ "rstrip": false,
232
+ "single_word": false,
233
+ "special": true
234
+ },
235
+ "128029": {
236
+ "content": "<|reserved_special_token_21|>",
237
+ "lstrip": false,
238
+ "normalized": false,
239
+ "rstrip": false,
240
+ "single_word": false,
241
+ "special": true
242
+ },
243
+ "128030": {
244
+ "content": "<|reserved_special_token_22|>",
245
+ "lstrip": false,
246
+ "normalized": false,
247
+ "rstrip": false,
248
+ "single_word": false,
249
+ "special": true
250
+ },
251
+ "128031": {
252
+ "content": "<|reserved_special_token_23|>",
253
+ "lstrip": false,
254
+ "normalized": false,
255
+ "rstrip": false,
256
+ "single_word": false,
257
+ "special": true
258
+ },
259
+ "128032": {
260
+ "content": "<|reserved_special_token_24|>",
261
+ "lstrip": false,
262
+ "normalized": false,
263
+ "rstrip": false,
264
+ "single_word": false,
265
+ "special": true
266
+ },
267
+ "128033": {
268
+ "content": "<|reserved_special_token_25|>",
269
+ "lstrip": false,
270
+ "normalized": false,
271
+ "rstrip": false,
272
+ "single_word": false,
273
+ "special": true
274
+ },
275
+ "128034": {
276
+ "content": "<|reserved_special_token_26|>",
277
+ "lstrip": false,
278
+ "normalized": false,
279
+ "rstrip": false,
280
+ "single_word": false,
281
+ "special": true
282
+ },
283
+ "128035": {
284
+ "content": "<|reserved_special_token_27|>",
285
+ "lstrip": false,
286
+ "normalized": false,
287
+ "rstrip": false,
288
+ "single_word": false,
289
+ "special": true
290
+ },
291
+ "128036": {
292
+ "content": "<|reserved_special_token_28|>",
293
+ "lstrip": false,
294
+ "normalized": false,
295
+ "rstrip": false,
296
+ "single_word": false,
297
+ "special": true
298
+ },
299
+ "128037": {
300
+ "content": "<|reserved_special_token_29|>",
301
+ "lstrip": false,
302
+ "normalized": false,
303
+ "rstrip": false,
304
+ "single_word": false,
305
+ "special": true
306
+ },
307
+ "128038": {
308
+ "content": "<|reserved_special_token_30|>",
309
+ "lstrip": false,
310
+ "normalized": false,
311
+ "rstrip": false,
312
+ "single_word": false,
313
+ "special": true
314
+ },
315
+ "128039": {
316
+ "content": "<|reserved_special_token_31|>",
317
+ "lstrip": false,
318
+ "normalized": false,
319
+ "rstrip": false,
320
+ "single_word": false,
321
+ "special": true
322
+ },
323
+ "128040": {
324
+ "content": "<|reserved_special_token_32|>",
325
+ "lstrip": false,
326
+ "normalized": false,
327
+ "rstrip": false,
328
+ "single_word": false,
329
+ "special": true
330
+ },
331
+ "128041": {
332
+ "content": "<|reserved_special_token_33|>",
333
+ "lstrip": false,
334
+ "normalized": false,
335
+ "rstrip": false,
336
+ "single_word": false,
337
+ "special": true
338
+ },
339
+ "128042": {
340
+ "content": "<|reserved_special_token_34|>",
341
+ "lstrip": false,
342
+ "normalized": false,
343
+ "rstrip": false,
344
+ "single_word": false,
345
+ "special": true
346
+ },
347
+ "128043": {
348
+ "content": "<|reserved_special_token_35|>",
349
+ "lstrip": false,
350
+ "normalized": false,
351
+ "rstrip": false,
352
+ "single_word": false,
353
+ "special": true
354
+ },
355
+ "128044": {
356
+ "content": "<|reserved_special_token_36|>",
357
+ "lstrip": false,
358
+ "normalized": false,
359
+ "rstrip": false,
360
+ "single_word": false,
361
+ "special": true
362
+ },
363
+ "128045": {
364
+ "content": "<|reserved_special_token_37|>",
365
+ "lstrip": false,
366
+ "normalized": false,
367
+ "rstrip": false,
368
+ "single_word": false,
369
+ "special": true
370
+ },
371
+ "128046": {
372
+ "content": "<|reserved_special_token_38|>",
373
+ "lstrip": false,
374
+ "normalized": false,
375
+ "rstrip": false,
376
+ "single_word": false,
377
+ "special": true
378
+ },
379
+ "128047": {
380
+ "content": "<|reserved_special_token_39|>",
381
+ "lstrip": false,
382
+ "normalized": false,
383
+ "rstrip": false,
384
+ "single_word": false,
385
+ "special": true
386
+ },
387
+ "128048": {
388
+ "content": "<|reserved_special_token_40|>",
389
+ "lstrip": false,
390
+ "normalized": false,
391
+ "rstrip": false,
392
+ "single_word": false,
393
+ "special": true
394
+ },
395
+ "128049": {
396
+ "content": "<|reserved_special_token_41|>",
397
+ "lstrip": false,
398
+ "normalized": false,
399
+ "rstrip": false,
400
+ "single_word": false,
401
+ "special": true
402
+ },
403
+ "128050": {
404
+ "content": "<|reserved_special_token_42|>",
405
+ "lstrip": false,
406
+ "normalized": false,
407
+ "rstrip": false,
408
+ "single_word": false,
409
+ "special": true
410
+ },
411
+ "128051": {
412
+ "content": "<|reserved_special_token_43|>",
413
+ "lstrip": false,
414
+ "normalized": false,
415
+ "rstrip": false,
416
+ "single_word": false,
417
+ "special": true
418
+ },
419
+ "128052": {
420
+ "content": "<|reserved_special_token_44|>",
421
+ "lstrip": false,
422
+ "normalized": false,
423
+ "rstrip": false,
424
+ "single_word": false,
425
+ "special": true
426
+ },
427
+ "128053": {
428
+ "content": "<|reserved_special_token_45|>",
429
+ "lstrip": false,
430
+ "normalized": false,
431
+ "rstrip": false,
432
+ "single_word": false,
433
+ "special": true
434
+ },
435
+ "128054": {
436
+ "content": "<|reserved_special_token_46|>",
437
+ "lstrip": false,
438
+ "normalized": false,
439
+ "rstrip": false,
440
+ "single_word": false,
441
+ "special": true
442
+ },
443
+ "128055": {
444
+ "content": "<|reserved_special_token_47|>",
445
+ "lstrip": false,
446
+ "normalized": false,
447
+ "rstrip": false,
448
+ "single_word": false,
449
+ "special": true
450
+ },
451
+ "128056": {
452
+ "content": "<|reserved_special_token_48|>",
453
+ "lstrip": false,
454
+ "normalized": false,
455
+ "rstrip": false,
456
+ "single_word": false,
457
+ "special": true
458
+ },
459
+ "128057": {
460
+ "content": "<|reserved_special_token_49|>",
461
+ "lstrip": false,
462
+ "normalized": false,
463
+ "rstrip": false,
464
+ "single_word": false,
465
+ "special": true
466
+ },
467
+ "128058": {
468
+ "content": "<|reserved_special_token_50|>",
469
+ "lstrip": false,
470
+ "normalized": false,
471
+ "rstrip": false,
472
+ "single_word": false,
473
+ "special": true
474
+ },
475
+ "128059": {
476
+ "content": "<|reserved_special_token_51|>",
477
+ "lstrip": false,
478
+ "normalized": false,
479
+ "rstrip": false,
480
+ "single_word": false,
481
+ "special": true
482
+ },
483
+ "128060": {
484
+ "content": "<|reserved_special_token_52|>",
485
+ "lstrip": false,
486
+ "normalized": false,
487
+ "rstrip": false,
488
+ "single_word": false,
489
+ "special": true
490
+ },
491
+ "128061": {
492
+ "content": "<|reserved_special_token_53|>",
493
+ "lstrip": false,
494
+ "normalized": false,
495
+ "rstrip": false,
496
+ "single_word": false,
497
+ "special": true
498
+ },
499
+ "128062": {
500
+ "content": "<|reserved_special_token_54|>",
501
+ "lstrip": false,
502
+ "normalized": false,
503
+ "rstrip": false,
504
+ "single_word": false,
505
+ "special": true
506
+ },
507
+ "128063": {
508
+ "content": "<|reserved_special_token_55|>",
509
+ "lstrip": false,
510
+ "normalized": false,
511
+ "rstrip": false,
512
+ "single_word": false,
513
+ "special": true
514
+ },
515
+ "128064": {
516
+ "content": "<|reserved_special_token_56|>",
517
+ "lstrip": false,
518
+ "normalized": false,
519
+ "rstrip": false,
520
+ "single_word": false,
521
+ "special": true
522
+ },
523
+ "128065": {
524
+ "content": "<|reserved_special_token_57|>",
525
+ "lstrip": false,
526
+ "normalized": false,
527
+ "rstrip": false,
528
+ "single_word": false,
529
+ "special": true
530
+ },
531
+ "128066": {
532
+ "content": "<|reserved_special_token_58|>",
533
+ "lstrip": false,
534
+ "normalized": false,
535
+ "rstrip": false,
536
+ "single_word": false,
537
+ "special": true
538
+ },
539
+ "128067": {
540
+ "content": "<|reserved_special_token_59|>",
541
+ "lstrip": false,
542
+ "normalized": false,
543
+ "rstrip": false,
544
+ "single_word": false,
545
+ "special": true
546
+ },
547
+ "128068": {
548
+ "content": "<|reserved_special_token_60|>",
549
+ "lstrip": false,
550
+ "normalized": false,
551
+ "rstrip": false,
552
+ "single_word": false,
553
+ "special": true
554
+ },
555
+ "128069": {
556
+ "content": "<|reserved_special_token_61|>",
557
+ "lstrip": false,
558
+ "normalized": false,
559
+ "rstrip": false,
560
+ "single_word": false,
561
+ "special": true
562
+ },
563
+ "128070": {
564
+ "content": "<|reserved_special_token_62|>",
565
+ "lstrip": false,
566
+ "normalized": false,
567
+ "rstrip": false,
568
+ "single_word": false,
569
+ "special": true
570
+ },
571
+ "128071": {
572
+ "content": "<|reserved_special_token_63|>",
573
+ "lstrip": false,
574
+ "normalized": false,
575
+ "rstrip": false,
576
+ "single_word": false,
577
+ "special": true
578
+ },
579
+ "128072": {
580
+ "content": "<|reserved_special_token_64|>",
581
+ "lstrip": false,
582
+ "normalized": false,
583
+ "rstrip": false,
584
+ "single_word": false,
585
+ "special": true
586
+ },
587
+ "128073": {
588
+ "content": "<|reserved_special_token_65|>",
589
+ "lstrip": false,
590
+ "normalized": false,
591
+ "rstrip": false,
592
+ "single_word": false,
593
+ "special": true
594
+ },
595
+ "128074": {
596
+ "content": "<|reserved_special_token_66|>",
597
+ "lstrip": false,
598
+ "normalized": false,
599
+ "rstrip": false,
600
+ "single_word": false,
601
+ "special": true
602
+ },
603
+ "128075": {
604
+ "content": "<|reserved_special_token_67|>",
605
+ "lstrip": false,
606
+ "normalized": false,
607
+ "rstrip": false,
608
+ "single_word": false,
609
+ "special": true
610
+ },
611
+ "128076": {
612
+ "content": "<|reserved_special_token_68|>",
613
+ "lstrip": false,
614
+ "normalized": false,
615
+ "rstrip": false,
616
+ "single_word": false,
617
+ "special": true
618
+ },
619
+ "128077": {
620
+ "content": "<|reserved_special_token_69|>",
621
+ "lstrip": false,
622
+ "normalized": false,
623
+ "rstrip": false,
624
+ "single_word": false,
625
+ "special": true
626
+ },
627
+ "128078": {
628
+ "content": "<|reserved_special_token_70|>",
629
+ "lstrip": false,
630
+ "normalized": false,
631
+ "rstrip": false,
632
+ "single_word": false,
633
+ "special": true
634
+ },
635
+ "128079": {
636
+ "content": "<|reserved_special_token_71|>",
637
+ "lstrip": false,
638
+ "normalized": false,
639
+ "rstrip": false,
640
+ "single_word": false,
641
+ "special": true
642
+ },
643
+ "128080": {
644
+ "content": "<|reserved_special_token_72|>",
645
+ "lstrip": false,
646
+ "normalized": false,
647
+ "rstrip": false,
648
+ "single_word": false,
649
+ "special": true
650
+ },
651
+ "128081": {
652
+ "content": "<|reserved_special_token_73|>",
653
+ "lstrip": false,
654
+ "normalized": false,
655
+ "rstrip": false,
656
+ "single_word": false,
657
+ "special": true
658
+ },
659
+ "128082": {
660
+ "content": "<|reserved_special_token_74|>",
661
+ "lstrip": false,
662
+ "normalized": false,
663
+ "rstrip": false,
664
+ "single_word": false,
665
+ "special": true
666
+ },
667
+ "128083": {
668
+ "content": "<|reserved_special_token_75|>",
669
+ "lstrip": false,
670
+ "normalized": false,
671
+ "rstrip": false,
672
+ "single_word": false,
673
+ "special": true
674
+ },
675
+ "128084": {
676
+ "content": "<|reserved_special_token_76|>",
677
+ "lstrip": false,
678
+ "normalized": false,
679
+ "rstrip": false,
680
+ "single_word": false,
681
+ "special": true
682
+ },
683
+ "128085": {
684
+ "content": "<|reserved_special_token_77|>",
685
+ "lstrip": false,
686
+ "normalized": false,
687
+ "rstrip": false,
688
+ "single_word": false,
689
+ "special": true
690
+ },
691
+ "128086": {
692
+ "content": "<|reserved_special_token_78|>",
693
+ "lstrip": false,
694
+ "normalized": false,
695
+ "rstrip": false,
696
+ "single_word": false,
697
+ "special": true
698
+ },
699
+ "128087": {
700
+ "content": "<|reserved_special_token_79|>",
701
+ "lstrip": false,
702
+ "normalized": false,
703
+ "rstrip": false,
704
+ "single_word": false,
705
+ "special": true
706
+ },
707
+ "128088": {
708
+ "content": "<|reserved_special_token_80|>",
709
+ "lstrip": false,
710
+ "normalized": false,
711
+ "rstrip": false,
712
+ "single_word": false,
713
+ "special": true
714
+ },
715
+ "128089": {
716
+ "content": "<|reserved_special_token_81|>",
717
+ "lstrip": false,
718
+ "normalized": false,
719
+ "rstrip": false,
720
+ "single_word": false,
721
+ "special": true
722
+ },
723
+ "128090": {
724
+ "content": "<|reserved_special_token_82|>",
725
+ "lstrip": false,
726
+ "normalized": false,
727
+ "rstrip": false,
728
+ "single_word": false,
729
+ "special": true
730
+ },
731
+ "128091": {
732
+ "content": "<|reserved_special_token_83|>",
733
+ "lstrip": false,
734
+ "normalized": false,
735
+ "rstrip": false,
736
+ "single_word": false,
737
+ "special": true
738
+ },
739
+ "128092": {
740
+ "content": "<|reserved_special_token_84|>",
741
+ "lstrip": false,
742
+ "normalized": false,
743
+ "rstrip": false,
744
+ "single_word": false,
745
+ "special": true
746
+ },
747
+ "128093": {
748
+ "content": "<|reserved_special_token_85|>",
749
+ "lstrip": false,
750
+ "normalized": false,
751
+ "rstrip": false,
752
+ "single_word": false,
753
+ "special": true
754
+ },
755
+ "128094": {
756
+ "content": "<|reserved_special_token_86|>",
757
+ "lstrip": false,
758
+ "normalized": false,
759
+ "rstrip": false,
760
+ "single_word": false,
761
+ "special": true
762
+ },
763
+ "128095": {
764
+ "content": "<|reserved_special_token_87|>",
765
+ "lstrip": false,
766
+ "normalized": false,
767
+ "rstrip": false,
768
+ "single_word": false,
769
+ "special": true
770
+ },
771
+ "128096": {
772
+ "content": "<|reserved_special_token_88|>",
773
+ "lstrip": false,
774
+ "normalized": false,
775
+ "rstrip": false,
776
+ "single_word": false,
777
+ "special": true
778
+ },
779
+ "128097": {
780
+ "content": "<|reserved_special_token_89|>",
781
+ "lstrip": false,
782
+ "normalized": false,
783
+ "rstrip": false,
784
+ "single_word": false,
785
+ "special": true
786
+ },
787
+ "128098": {
788
+ "content": "<|reserved_special_token_90|>",
789
+ "lstrip": false,
790
+ "normalized": false,
791
+ "rstrip": false,
792
+ "single_word": false,
793
+ "special": true
794
+ },
795
+ "128099": {
796
+ "content": "<|reserved_special_token_91|>",
797
+ "lstrip": false,
798
+ "normalized": false,
799
+ "rstrip": false,
800
+ "single_word": false,
801
+ "special": true
802
+ },
803
+ "128100": {
804
+ "content": "<|reserved_special_token_92|>",
805
+ "lstrip": false,
806
+ "normalized": false,
807
+ "rstrip": false,
808
+ "single_word": false,
809
+ "special": true
810
+ },
811
+ "128101": {
812
+ "content": "<|reserved_special_token_93|>",
813
+ "lstrip": false,
814
+ "normalized": false,
815
+ "rstrip": false,
816
+ "single_word": false,
817
+ "special": true
818
+ },
819
+ "128102": {
820
+ "content": "<|reserved_special_token_94|>",
821
+ "lstrip": false,
822
+ "normalized": false,
823
+ "rstrip": false,
824
+ "single_word": false,
825
+ "special": true
826
+ },
827
+ "128103": {
828
+ "content": "<|reserved_special_token_95|>",
829
+ "lstrip": false,
830
+ "normalized": false,
831
+ "rstrip": false,
832
+ "single_word": false,
833
+ "special": true
834
+ },
835
+ "128104": {
836
+ "content": "<|reserved_special_token_96|>",
837
+ "lstrip": false,
838
+ "normalized": false,
839
+ "rstrip": false,
840
+ "single_word": false,
841
+ "special": true
842
+ },
843
+ "128105": {
844
+ "content": "<|reserved_special_token_97|>",
845
+ "lstrip": false,
846
+ "normalized": false,
847
+ "rstrip": false,
848
+ "single_word": false,
849
+ "special": true
850
+ },
851
+ "128106": {
852
+ "content": "<|reserved_special_token_98|>",
853
+ "lstrip": false,
854
+ "normalized": false,
855
+ "rstrip": false,
856
+ "single_word": false,
857
+ "special": true
858
+ },
859
+ "128107": {
860
+ "content": "<|reserved_special_token_99|>",
861
+ "lstrip": false,
862
+ "normalized": false,
863
+ "rstrip": false,
864
+ "single_word": false,
865
+ "special": true
866
+ },
867
+ "128108": {
868
+ "content": "<|reserved_special_token_100|>",
869
+ "lstrip": false,
870
+ "normalized": false,
871
+ "rstrip": false,
872
+ "single_word": false,
873
+ "special": true
874
+ },
875
+ "128109": {
876
+ "content": "<|reserved_special_token_101|>",
877
+ "lstrip": false,
878
+ "normalized": false,
879
+ "rstrip": false,
880
+ "single_word": false,
881
+ "special": true
882
+ },
883
+ "128110": {
884
+ "content": "<|reserved_special_token_102|>",
885
+ "lstrip": false,
886
+ "normalized": false,
887
+ "rstrip": false,
888
+ "single_word": false,
889
+ "special": true
890
+ },
891
+ "128111": {
892
+ "content": "<|reserved_special_token_103|>",
893
+ "lstrip": false,
894
+ "normalized": false,
895
+ "rstrip": false,
896
+ "single_word": false,
897
+ "special": true
898
+ },
899
+ "128112": {
900
+ "content": "<|reserved_special_token_104|>",
901
+ "lstrip": false,
902
+ "normalized": false,
903
+ "rstrip": false,
904
+ "single_word": false,
905
+ "special": true
906
+ },
907
+ "128113": {
908
+ "content": "<|reserved_special_token_105|>",
909
+ "lstrip": false,
910
+ "normalized": false,
911
+ "rstrip": false,
912
+ "single_word": false,
913
+ "special": true
914
+ },
915
+ "128114": {
916
+ "content": "<|reserved_special_token_106|>",
917
+ "lstrip": false,
918
+ "normalized": false,
919
+ "rstrip": false,
920
+ "single_word": false,
921
+ "special": true
922
+ },
923
+ "128115": {
924
+ "content": "<|reserved_special_token_107|>",
925
+ "lstrip": false,
926
+ "normalized": false,
927
+ "rstrip": false,
928
+ "single_word": false,
929
+ "special": true
930
+ },
931
+ "128116": {
932
+ "content": "<|reserved_special_token_108|>",
933
+ "lstrip": false,
934
+ "normalized": false,
935
+ "rstrip": false,
936
+ "single_word": false,
937
+ "special": true
938
+ },
939
+ "128117": {
940
+ "content": "<|reserved_special_token_109|>",
941
+ "lstrip": false,
942
+ "normalized": false,
943
+ "rstrip": false,
944
+ "single_word": false,
945
+ "special": true
946
+ },
947
+ "128118": {
948
+ "content": "<|reserved_special_token_110|>",
949
+ "lstrip": false,
950
+ "normalized": false,
951
+ "rstrip": false,
952
+ "single_word": false,
953
+ "special": true
954
+ },
955
+ "128119": {
956
+ "content": "<|reserved_special_token_111|>",
957
+ "lstrip": false,
958
+ "normalized": false,
959
+ "rstrip": false,
960
+ "single_word": false,
961
+ "special": true
962
+ },
963
+ "128120": {
964
+ "content": "<|reserved_special_token_112|>",
965
+ "lstrip": false,
966
+ "normalized": false,
967
+ "rstrip": false,
968
+ "single_word": false,
969
+ "special": true
970
+ },
971
+ "128121": {
972
+ "content": "<|reserved_special_token_113|>",
973
+ "lstrip": false,
974
+ "normalized": false,
975
+ "rstrip": false,
976
+ "single_word": false,
977
+ "special": true
978
+ },
979
+ "128122": {
980
+ "content": "<|reserved_special_token_114|>",
981
+ "lstrip": false,
982
+ "normalized": false,
983
+ "rstrip": false,
984
+ "single_word": false,
985
+ "special": true
986
+ },
987
+ "128123": {
988
+ "content": "<|reserved_special_token_115|>",
989
+ "lstrip": false,
990
+ "normalized": false,
991
+ "rstrip": false,
992
+ "single_word": false,
993
+ "special": true
994
+ },
995
+ "128124": {
996
+ "content": "<|reserved_special_token_116|>",
997
+ "lstrip": false,
998
+ "normalized": false,
999
+ "rstrip": false,
1000
+ "single_word": false,
1001
+ "special": true
1002
+ },
1003
+ "128125": {
1004
+ "content": "<|reserved_special_token_117|>",
1005
+ "lstrip": false,
1006
+ "normalized": false,
1007
+ "rstrip": false,
1008
+ "single_word": false,
1009
+ "special": true
1010
+ },
1011
+ "128126": {
1012
+ "content": "<|reserved_special_token_118|>",
1013
+ "lstrip": false,
1014
+ "normalized": false,
1015
+ "rstrip": false,
1016
+ "single_word": false,
1017
+ "special": true
1018
+ },
1019
+ "128127": {
1020
+ "content": "<|reserved_special_token_119|>",
1021
+ "lstrip": false,
1022
+ "normalized": false,
1023
+ "rstrip": false,
1024
+ "single_word": false,
1025
+ "special": true
1026
+ },
1027
+ "128128": {
1028
+ "content": "<|reserved_special_token_120|>",
1029
+ "lstrip": false,
1030
+ "normalized": false,
1031
+ "rstrip": false,
1032
+ "single_word": false,
1033
+ "special": true
1034
+ },
1035
+ "128129": {
1036
+ "content": "<|reserved_special_token_121|>",
1037
+ "lstrip": false,
1038
+ "normalized": false,
1039
+ "rstrip": false,
1040
+ "single_word": false,
1041
+ "special": true
1042
+ },
1043
+ "128130": {
1044
+ "content": "<|reserved_special_token_122|>",
1045
+ "lstrip": false,
1046
+ "normalized": false,
1047
+ "rstrip": false,
1048
+ "single_word": false,
1049
+ "special": true
1050
+ },
1051
+ "128131": {
1052
+ "content": "<|reserved_special_token_123|>",
1053
+ "lstrip": false,
1054
+ "normalized": false,
1055
+ "rstrip": false,
1056
+ "single_word": false,
1057
+ "special": true
1058
+ },
1059
+ "128132": {
1060
+ "content": "<|reserved_special_token_124|>",
1061
+ "lstrip": false,
1062
+ "normalized": false,
1063
+ "rstrip": false,
1064
+ "single_word": false,
1065
+ "special": true
1066
+ },
1067
+ "128133": {
1068
+ "content": "<|reserved_special_token_125|>",
1069
+ "lstrip": false,
1070
+ "normalized": false,
1071
+ "rstrip": false,
1072
+ "single_word": false,
1073
+ "special": true
1074
+ },
1075
+ "128134": {
1076
+ "content": "<|reserved_special_token_126|>",
1077
+ "lstrip": false,
1078
+ "normalized": false,
1079
+ "rstrip": false,
1080
+ "single_word": false,
1081
+ "special": true
1082
+ },
1083
+ "128135": {
1084
+ "content": "<|reserved_special_token_127|>",
1085
+ "lstrip": false,
1086
+ "normalized": false,
1087
+ "rstrip": false,
1088
+ "single_word": false,
1089
+ "special": true
1090
+ },
1091
+ "128136": {
1092
+ "content": "<|reserved_special_token_128|>",
1093
+ "lstrip": false,
1094
+ "normalized": false,
1095
+ "rstrip": false,
1096
+ "single_word": false,
1097
+ "special": true
1098
+ },
1099
+ "128137": {
1100
+ "content": "<|reserved_special_token_129|>",
1101
+ "lstrip": false,
1102
+ "normalized": false,
1103
+ "rstrip": false,
1104
+ "single_word": false,
1105
+ "special": true
1106
+ },
1107
+ "128138": {
1108
+ "content": "<|reserved_special_token_130|>",
1109
+ "lstrip": false,
1110
+ "normalized": false,
1111
+ "rstrip": false,
1112
+ "single_word": false,
1113
+ "special": true
1114
+ },
1115
+ "128139": {
1116
+ "content": "<|reserved_special_token_131|>",
1117
+ "lstrip": false,
1118
+ "normalized": false,
1119
+ "rstrip": false,
1120
+ "single_word": false,
1121
+ "special": true
1122
+ },
1123
+ "128140": {
1124
+ "content": "<|reserved_special_token_132|>",
1125
+ "lstrip": false,
1126
+ "normalized": false,
1127
+ "rstrip": false,
1128
+ "single_word": false,
1129
+ "special": true
1130
+ },
1131
+ "128141": {
1132
+ "content": "<|reserved_special_token_133|>",
1133
+ "lstrip": false,
1134
+ "normalized": false,
1135
+ "rstrip": false,
1136
+ "single_word": false,
1137
+ "special": true
1138
+ },
1139
+ "128142": {
1140
+ "content": "<|reserved_special_token_134|>",
1141
+ "lstrip": false,
1142
+ "normalized": false,
1143
+ "rstrip": false,
1144
+ "single_word": false,
1145
+ "special": true
1146
+ },
1147
+ "128143": {
1148
+ "content": "<|reserved_special_token_135|>",
1149
+ "lstrip": false,
1150
+ "normalized": false,
1151
+ "rstrip": false,
1152
+ "single_word": false,
1153
+ "special": true
1154
+ },
1155
+ "128144": {
1156
+ "content": "<|reserved_special_token_136|>",
1157
+ "lstrip": false,
1158
+ "normalized": false,
1159
+ "rstrip": false,
1160
+ "single_word": false,
1161
+ "special": true
1162
+ },
1163
+ "128145": {
1164
+ "content": "<|reserved_special_token_137|>",
1165
+ "lstrip": false,
1166
+ "normalized": false,
1167
+ "rstrip": false,
1168
+ "single_word": false,
1169
+ "special": true
1170
+ },
1171
+ "128146": {
1172
+ "content": "<|reserved_special_token_138|>",
1173
+ "lstrip": false,
1174
+ "normalized": false,
1175
+ "rstrip": false,
1176
+ "single_word": false,
1177
+ "special": true
1178
+ },
1179
+ "128147": {
1180
+ "content": "<|reserved_special_token_139|>",
1181
+ "lstrip": false,
1182
+ "normalized": false,
1183
+ "rstrip": false,
1184
+ "single_word": false,
1185
+ "special": true
1186
+ },
1187
+ "128148": {
1188
+ "content": "<|reserved_special_token_140|>",
1189
+ "lstrip": false,
1190
+ "normalized": false,
1191
+ "rstrip": false,
1192
+ "single_word": false,
1193
+ "special": true
1194
+ },
1195
+ "128149": {
1196
+ "content": "<|reserved_special_token_141|>",
1197
+ "lstrip": false,
1198
+ "normalized": false,
1199
+ "rstrip": false,
1200
+ "single_word": false,
1201
+ "special": true
1202
+ },
1203
+ "128150": {
1204
+ "content": "<|reserved_special_token_142|>",
1205
+ "lstrip": false,
1206
+ "normalized": false,
1207
+ "rstrip": false,
1208
+ "single_word": false,
1209
+ "special": true
1210
+ },
1211
+ "128151": {
1212
+ "content": "<|reserved_special_token_143|>",
1213
+ "lstrip": false,
1214
+ "normalized": false,
1215
+ "rstrip": false,
1216
+ "single_word": false,
1217
+ "special": true
1218
+ },
1219
+ "128152": {
1220
+ "content": "<|reserved_special_token_144|>",
1221
+ "lstrip": false,
1222
+ "normalized": false,
1223
+ "rstrip": false,
1224
+ "single_word": false,
1225
+ "special": true
1226
+ },
1227
+ "128153": {
1228
+ "content": "<|reserved_special_token_145|>",
1229
+ "lstrip": false,
1230
+ "normalized": false,
1231
+ "rstrip": false,
1232
+ "single_word": false,
1233
+ "special": true
1234
+ },
1235
+ "128154": {
1236
+ "content": "<|reserved_special_token_146|>",
1237
+ "lstrip": false,
1238
+ "normalized": false,
1239
+ "rstrip": false,
1240
+ "single_word": false,
1241
+ "special": true
1242
+ },
1243
+ "128155": {
1244
+ "content": "<|reserved_special_token_147|>",
1245
+ "lstrip": false,
1246
+ "normalized": false,
1247
+ "rstrip": false,
1248
+ "single_word": false,
1249
+ "special": true
1250
+ },
1251
+ "128156": {
1252
+ "content": "<|reserved_special_token_148|>",
1253
+ "lstrip": false,
1254
+ "normalized": false,
1255
+ "rstrip": false,
1256
+ "single_word": false,
1257
+ "special": true
1258
+ },
1259
+ "128157": {
1260
+ "content": "<|reserved_special_token_149|>",
1261
+ "lstrip": false,
1262
+ "normalized": false,
1263
+ "rstrip": false,
1264
+ "single_word": false,
1265
+ "special": true
1266
+ },
1267
+ "128158": {
1268
+ "content": "<|reserved_special_token_150|>",
1269
+ "lstrip": false,
1270
+ "normalized": false,
1271
+ "rstrip": false,
1272
+ "single_word": false,
1273
+ "special": true
1274
+ },
1275
+ "128159": {
1276
+ "content": "<|reserved_special_token_151|>",
1277
+ "lstrip": false,
1278
+ "normalized": false,
1279
+ "rstrip": false,
1280
+ "single_word": false,
1281
+ "special": true
1282
+ },
1283
+ "128160": {
1284
+ "content": "<|reserved_special_token_152|>",
1285
+ "lstrip": false,
1286
+ "normalized": false,
1287
+ "rstrip": false,
1288
+ "single_word": false,
1289
+ "special": true
1290
+ },
1291
+ "128161": {
1292
+ "content": "<|reserved_special_token_153|>",
1293
+ "lstrip": false,
1294
+ "normalized": false,
1295
+ "rstrip": false,
1296
+ "single_word": false,
1297
+ "special": true
1298
+ },
1299
+ "128162": {
1300
+ "content": "<|reserved_special_token_154|>",
1301
+ "lstrip": false,
1302
+ "normalized": false,
1303
+ "rstrip": false,
1304
+ "single_word": false,
1305
+ "special": true
1306
+ },
1307
+ "128163": {
1308
+ "content": "<|reserved_special_token_155|>",
1309
+ "lstrip": false,
1310
+ "normalized": false,
1311
+ "rstrip": false,
1312
+ "single_word": false,
1313
+ "special": true
1314
+ },
1315
+ "128164": {
1316
+ "content": "<|reserved_special_token_156|>",
1317
+ "lstrip": false,
1318
+ "normalized": false,
1319
+ "rstrip": false,
1320
+ "single_word": false,
1321
+ "special": true
1322
+ },
1323
+ "128165": {
1324
+ "content": "<|reserved_special_token_157|>",
1325
+ "lstrip": false,
1326
+ "normalized": false,
1327
+ "rstrip": false,
1328
+ "single_word": false,
1329
+ "special": true
1330
+ },
1331
+ "128166": {
1332
+ "content": "<|reserved_special_token_158|>",
1333
+ "lstrip": false,
1334
+ "normalized": false,
1335
+ "rstrip": false,
1336
+ "single_word": false,
1337
+ "special": true
1338
+ },
1339
+ "128167": {
1340
+ "content": "<|reserved_special_token_159|>",
1341
+ "lstrip": false,
1342
+ "normalized": false,
1343
+ "rstrip": false,
1344
+ "single_word": false,
1345
+ "special": true
1346
+ },
1347
+ "128168": {
1348
+ "content": "<|reserved_special_token_160|>",
1349
+ "lstrip": false,
1350
+ "normalized": false,
1351
+ "rstrip": false,
1352
+ "single_word": false,
1353
+ "special": true
1354
+ },
1355
+ "128169": {
1356
+ "content": "<|reserved_special_token_161|>",
1357
+ "lstrip": false,
1358
+ "normalized": false,
1359
+ "rstrip": false,
1360
+ "single_word": false,
1361
+ "special": true
1362
+ },
1363
+ "128170": {
1364
+ "content": "<|reserved_special_token_162|>",
1365
+ "lstrip": false,
1366
+ "normalized": false,
1367
+ "rstrip": false,
1368
+ "single_word": false,
1369
+ "special": true
1370
+ },
1371
+ "128171": {
1372
+ "content": "<|reserved_special_token_163|>",
1373
+ "lstrip": false,
1374
+ "normalized": false,
1375
+ "rstrip": false,
1376
+ "single_word": false,
1377
+ "special": true
1378
+ },
1379
+ "128172": {
1380
+ "content": "<|reserved_special_token_164|>",
1381
+ "lstrip": false,
1382
+ "normalized": false,
1383
+ "rstrip": false,
1384
+ "single_word": false,
1385
+ "special": true
1386
+ },
1387
+ "128173": {
1388
+ "content": "<|reserved_special_token_165|>",
1389
+ "lstrip": false,
1390
+ "normalized": false,
1391
+ "rstrip": false,
1392
+ "single_word": false,
1393
+ "special": true
1394
+ },
1395
+ "128174": {
1396
+ "content": "<|reserved_special_token_166|>",
1397
+ "lstrip": false,
1398
+ "normalized": false,
1399
+ "rstrip": false,
1400
+ "single_word": false,
1401
+ "special": true
1402
+ },
1403
+ "128175": {
1404
+ "content": "<|reserved_special_token_167|>",
1405
+ "lstrip": false,
1406
+ "normalized": false,
1407
+ "rstrip": false,
1408
+ "single_word": false,
1409
+ "special": true
1410
+ },
1411
+ "128176": {
1412
+ "content": "<|reserved_special_token_168|>",
1413
+ "lstrip": false,
1414
+ "normalized": false,
1415
+ "rstrip": false,
1416
+ "single_word": false,
1417
+ "special": true
1418
+ },
1419
+ "128177": {
1420
+ "content": "<|reserved_special_token_169|>",
1421
+ "lstrip": false,
1422
+ "normalized": false,
1423
+ "rstrip": false,
1424
+ "single_word": false,
1425
+ "special": true
1426
+ },
1427
+ "128178": {
1428
+ "content": "<|reserved_special_token_170|>",
1429
+ "lstrip": false,
1430
+ "normalized": false,
1431
+ "rstrip": false,
1432
+ "single_word": false,
1433
+ "special": true
1434
+ },
1435
+ "128179": {
1436
+ "content": "<|reserved_special_token_171|>",
1437
+ "lstrip": false,
1438
+ "normalized": false,
1439
+ "rstrip": false,
1440
+ "single_word": false,
1441
+ "special": true
1442
+ },
1443
+ "128180": {
1444
+ "content": "<|reserved_special_token_172|>",
1445
+ "lstrip": false,
1446
+ "normalized": false,
1447
+ "rstrip": false,
1448
+ "single_word": false,
1449
+ "special": true
1450
+ },
1451
+ "128181": {
1452
+ "content": "<|reserved_special_token_173|>",
1453
+ "lstrip": false,
1454
+ "normalized": false,
1455
+ "rstrip": false,
1456
+ "single_word": false,
1457
+ "special": true
1458
+ },
1459
+ "128182": {
1460
+ "content": "<|reserved_special_token_174|>",
1461
+ "lstrip": false,
1462
+ "normalized": false,
1463
+ "rstrip": false,
1464
+ "single_word": false,
1465
+ "special": true
1466
+ },
1467
+ "128183": {
1468
+ "content": "<|reserved_special_token_175|>",
1469
+ "lstrip": false,
1470
+ "normalized": false,
1471
+ "rstrip": false,
1472
+ "single_word": false,
1473
+ "special": true
1474
+ },
1475
+ "128184": {
1476
+ "content": "<|reserved_special_token_176|>",
1477
+ "lstrip": false,
1478
+ "normalized": false,
1479
+ "rstrip": false,
1480
+ "single_word": false,
1481
+ "special": true
1482
+ },
1483
+ "128185": {
1484
+ "content": "<|reserved_special_token_177|>",
1485
+ "lstrip": false,
1486
+ "normalized": false,
1487
+ "rstrip": false,
1488
+ "single_word": false,
1489
+ "special": true
1490
+ },
1491
+ "128186": {
1492
+ "content": "<|reserved_special_token_178|>",
1493
+ "lstrip": false,
1494
+ "normalized": false,
1495
+ "rstrip": false,
1496
+ "single_word": false,
1497
+ "special": true
1498
+ },
1499
+ "128187": {
1500
+ "content": "<|reserved_special_token_179|>",
1501
+ "lstrip": false,
1502
+ "normalized": false,
1503
+ "rstrip": false,
1504
+ "single_word": false,
1505
+ "special": true
1506
+ },
1507
+ "128188": {
1508
+ "content": "<|reserved_special_token_180|>",
1509
+ "lstrip": false,
1510
+ "normalized": false,
1511
+ "rstrip": false,
1512
+ "single_word": false,
1513
+ "special": true
1514
+ },
1515
+ "128189": {
1516
+ "content": "<|reserved_special_token_181|>",
1517
+ "lstrip": false,
1518
+ "normalized": false,
1519
+ "rstrip": false,
1520
+ "single_word": false,
1521
+ "special": true
1522
+ },
1523
+ "128190": {
1524
+ "content": "<|reserved_special_token_182|>",
1525
+ "lstrip": false,
1526
+ "normalized": false,
1527
+ "rstrip": false,
1528
+ "single_word": false,
1529
+ "special": true
1530
+ },
1531
+ "128191": {
1532
+ "content": "<|reserved_special_token_183|>",
1533
+ "lstrip": false,
1534
+ "normalized": false,
1535
+ "rstrip": false,
1536
+ "single_word": false,
1537
+ "special": true
1538
+ },
1539
+ "128192": {
1540
+ "content": "<|reserved_special_token_184|>",
1541
+ "lstrip": false,
1542
+ "normalized": false,
1543
+ "rstrip": false,
1544
+ "single_word": false,
1545
+ "special": true
1546
+ },
1547
+ "128193": {
1548
+ "content": "<|reserved_special_token_185|>",
1549
+ "lstrip": false,
1550
+ "normalized": false,
1551
+ "rstrip": false,
1552
+ "single_word": false,
1553
+ "special": true
1554
+ },
1555
+ "128194": {
1556
+ "content": "<|reserved_special_token_186|>",
1557
+ "lstrip": false,
1558
+ "normalized": false,
1559
+ "rstrip": false,
1560
+ "single_word": false,
1561
+ "special": true
1562
+ },
1563
+ "128195": {
1564
+ "content": "<|reserved_special_token_187|>",
1565
+ "lstrip": false,
1566
+ "normalized": false,
1567
+ "rstrip": false,
1568
+ "single_word": false,
1569
+ "special": true
1570
+ },
1571
+ "128196": {
1572
+ "content": "<|reserved_special_token_188|>",
1573
+ "lstrip": false,
1574
+ "normalized": false,
1575
+ "rstrip": false,
1576
+ "single_word": false,
1577
+ "special": true
1578
+ },
1579
+ "128197": {
1580
+ "content": "<|reserved_special_token_189|>",
1581
+ "lstrip": false,
1582
+ "normalized": false,
1583
+ "rstrip": false,
1584
+ "single_word": false,
1585
+ "special": true
1586
+ },
1587
+ "128198": {
1588
+ "content": "<|reserved_special_token_190|>",
1589
+ "lstrip": false,
1590
+ "normalized": false,
1591
+ "rstrip": false,
1592
+ "single_word": false,
1593
+ "special": true
1594
+ },
1595
+ "128199": {
1596
+ "content": "<|reserved_special_token_191|>",
1597
+ "lstrip": false,
1598
+ "normalized": false,
1599
+ "rstrip": false,
1600
+ "single_word": false,
1601
+ "special": true
1602
+ },
1603
+ "128200": {
1604
+ "content": "<|reserved_special_token_192|>",
1605
+ "lstrip": false,
1606
+ "normalized": false,
1607
+ "rstrip": false,
1608
+ "single_word": false,
1609
+ "special": true
1610
+ },
1611
+ "128201": {
1612
+ "content": "<|reserved_special_token_193|>",
1613
+ "lstrip": false,
1614
+ "normalized": false,
1615
+ "rstrip": false,
1616
+ "single_word": false,
1617
+ "special": true
1618
+ },
1619
+ "128202": {
1620
+ "content": "<|reserved_special_token_194|>",
1621
+ "lstrip": false,
1622
+ "normalized": false,
1623
+ "rstrip": false,
1624
+ "single_word": false,
1625
+ "special": true
1626
+ },
1627
+ "128203": {
1628
+ "content": "<|reserved_special_token_195|>",
1629
+ "lstrip": false,
1630
+ "normalized": false,
1631
+ "rstrip": false,
1632
+ "single_word": false,
1633
+ "special": true
1634
+ },
1635
+ "128204": {
1636
+ "content": "<|reserved_special_token_196|>",
1637
+ "lstrip": false,
1638
+ "normalized": false,
1639
+ "rstrip": false,
1640
+ "single_word": false,
1641
+ "special": true
1642
+ },
1643
+ "128205": {
1644
+ "content": "<|reserved_special_token_197|>",
1645
+ "lstrip": false,
1646
+ "normalized": false,
1647
+ "rstrip": false,
1648
+ "single_word": false,
1649
+ "special": true
1650
+ },
1651
+ "128206": {
1652
+ "content": "<|reserved_special_token_198|>",
1653
+ "lstrip": false,
1654
+ "normalized": false,
1655
+ "rstrip": false,
1656
+ "single_word": false,
1657
+ "special": true
1658
+ },
1659
+ "128207": {
1660
+ "content": "<|reserved_special_token_199|>",
1661
+ "lstrip": false,
1662
+ "normalized": false,
1663
+ "rstrip": false,
1664
+ "single_word": false,
1665
+ "special": true
1666
+ },
1667
+ "128208": {
1668
+ "content": "<|reserved_special_token_200|>",
1669
+ "lstrip": false,
1670
+ "normalized": false,
1671
+ "rstrip": false,
1672
+ "single_word": false,
1673
+ "special": true
1674
+ },
1675
+ "128209": {
1676
+ "content": "<|reserved_special_token_201|>",
1677
+ "lstrip": false,
1678
+ "normalized": false,
1679
+ "rstrip": false,
1680
+ "single_word": false,
1681
+ "special": true
1682
+ },
1683
+ "128210": {
1684
+ "content": "<|reserved_special_token_202|>",
1685
+ "lstrip": false,
1686
+ "normalized": false,
1687
+ "rstrip": false,
1688
+ "single_word": false,
1689
+ "special": true
1690
+ },
1691
+ "128211": {
1692
+ "content": "<|reserved_special_token_203|>",
1693
+ "lstrip": false,
1694
+ "normalized": false,
1695
+ "rstrip": false,
1696
+ "single_word": false,
1697
+ "special": true
1698
+ },
1699
+ "128212": {
1700
+ "content": "<|reserved_special_token_204|>",
1701
+ "lstrip": false,
1702
+ "normalized": false,
1703
+ "rstrip": false,
1704
+ "single_word": false,
1705
+ "special": true
1706
+ },
1707
+ "128213": {
1708
+ "content": "<|reserved_special_token_205|>",
1709
+ "lstrip": false,
1710
+ "normalized": false,
1711
+ "rstrip": false,
1712
+ "single_word": false,
1713
+ "special": true
1714
+ },
1715
+ "128214": {
1716
+ "content": "<|reserved_special_token_206|>",
1717
+ "lstrip": false,
1718
+ "normalized": false,
1719
+ "rstrip": false,
1720
+ "single_word": false,
1721
+ "special": true
1722
+ },
1723
+ "128215": {
1724
+ "content": "<|reserved_special_token_207|>",
1725
+ "lstrip": false,
1726
+ "normalized": false,
1727
+ "rstrip": false,
1728
+ "single_word": false,
1729
+ "special": true
1730
+ },
1731
+ "128216": {
1732
+ "content": "<|reserved_special_token_208|>",
1733
+ "lstrip": false,
1734
+ "normalized": false,
1735
+ "rstrip": false,
1736
+ "single_word": false,
1737
+ "special": true
1738
+ },
1739
+ "128217": {
1740
+ "content": "<|reserved_special_token_209|>",
1741
+ "lstrip": false,
1742
+ "normalized": false,
1743
+ "rstrip": false,
1744
+ "single_word": false,
1745
+ "special": true
1746
+ },
1747
+ "128218": {
1748
+ "content": "<|reserved_special_token_210|>",
1749
+ "lstrip": false,
1750
+ "normalized": false,
1751
+ "rstrip": false,
1752
+ "single_word": false,
1753
+ "special": true
1754
+ },
1755
+ "128219": {
1756
+ "content": "<|reserved_special_token_211|>",
1757
+ "lstrip": false,
1758
+ "normalized": false,
1759
+ "rstrip": false,
1760
+ "single_word": false,
1761
+ "special": true
1762
+ },
1763
+ "128220": {
1764
+ "content": "<|reserved_special_token_212|>",
1765
+ "lstrip": false,
1766
+ "normalized": false,
1767
+ "rstrip": false,
1768
+ "single_word": false,
1769
+ "special": true
1770
+ },
1771
+ "128221": {
1772
+ "content": "<|reserved_special_token_213|>",
1773
+ "lstrip": false,
1774
+ "normalized": false,
1775
+ "rstrip": false,
1776
+ "single_word": false,
1777
+ "special": true
1778
+ },
1779
+ "128222": {
1780
+ "content": "<|reserved_special_token_214|>",
1781
+ "lstrip": false,
1782
+ "normalized": false,
1783
+ "rstrip": false,
1784
+ "single_word": false,
1785
+ "special": true
1786
+ },
1787
+ "128223": {
1788
+ "content": "<|reserved_special_token_215|>",
1789
+ "lstrip": false,
1790
+ "normalized": false,
1791
+ "rstrip": false,
1792
+ "single_word": false,
1793
+ "special": true
1794
+ },
1795
+ "128224": {
1796
+ "content": "<|reserved_special_token_216|>",
1797
+ "lstrip": false,
1798
+ "normalized": false,
1799
+ "rstrip": false,
1800
+ "single_word": false,
1801
+ "special": true
1802
+ },
1803
+ "128225": {
1804
+ "content": "<|reserved_special_token_217|>",
1805
+ "lstrip": false,
1806
+ "normalized": false,
1807
+ "rstrip": false,
1808
+ "single_word": false,
1809
+ "special": true
1810
+ },
1811
+ "128226": {
1812
+ "content": "<|reserved_special_token_218|>",
1813
+ "lstrip": false,
1814
+ "normalized": false,
1815
+ "rstrip": false,
1816
+ "single_word": false,
1817
+ "special": true
1818
+ },
1819
+ "128227": {
1820
+ "content": "<|reserved_special_token_219|>",
1821
+ "lstrip": false,
1822
+ "normalized": false,
1823
+ "rstrip": false,
1824
+ "single_word": false,
1825
+ "special": true
1826
+ },
1827
+ "128228": {
1828
+ "content": "<|reserved_special_token_220|>",
1829
+ "lstrip": false,
1830
+ "normalized": false,
1831
+ "rstrip": false,
1832
+ "single_word": false,
1833
+ "special": true
1834
+ },
1835
+ "128229": {
1836
+ "content": "<|reserved_special_token_221|>",
1837
+ "lstrip": false,
1838
+ "normalized": false,
1839
+ "rstrip": false,
1840
+ "single_word": false,
1841
+ "special": true
1842
+ },
1843
+ "128230": {
1844
+ "content": "<|reserved_special_token_222|>",
1845
+ "lstrip": false,
1846
+ "normalized": false,
1847
+ "rstrip": false,
1848
+ "single_word": false,
1849
+ "special": true
1850
+ },
1851
+ "128231": {
1852
+ "content": "<|reserved_special_token_223|>",
1853
+ "lstrip": false,
1854
+ "normalized": false,
1855
+ "rstrip": false,
1856
+ "single_word": false,
1857
+ "special": true
1858
+ },
1859
+ "128232": {
1860
+ "content": "<|reserved_special_token_224|>",
1861
+ "lstrip": false,
1862
+ "normalized": false,
1863
+ "rstrip": false,
1864
+ "single_word": false,
1865
+ "special": true
1866
+ },
1867
+ "128233": {
1868
+ "content": "<|reserved_special_token_225|>",
1869
+ "lstrip": false,
1870
+ "normalized": false,
1871
+ "rstrip": false,
1872
+ "single_word": false,
1873
+ "special": true
1874
+ },
1875
+ "128234": {
1876
+ "content": "<|reserved_special_token_226|>",
1877
+ "lstrip": false,
1878
+ "normalized": false,
1879
+ "rstrip": false,
1880
+ "single_word": false,
1881
+ "special": true
1882
+ },
1883
+ "128235": {
1884
+ "content": "<|reserved_special_token_227|>",
1885
+ "lstrip": false,
1886
+ "normalized": false,
1887
+ "rstrip": false,
1888
+ "single_word": false,
1889
+ "special": true
1890
+ },
1891
+ "128236": {
1892
+ "content": "<|reserved_special_token_228|>",
1893
+ "lstrip": false,
1894
+ "normalized": false,
1895
+ "rstrip": false,
1896
+ "single_word": false,
1897
+ "special": true
1898
+ },
1899
+ "128237": {
1900
+ "content": "<|reserved_special_token_229|>",
1901
+ "lstrip": false,
1902
+ "normalized": false,
1903
+ "rstrip": false,
1904
+ "single_word": false,
1905
+ "special": true
1906
+ },
1907
+ "128238": {
1908
+ "content": "<|reserved_special_token_230|>",
1909
+ "lstrip": false,
1910
+ "normalized": false,
1911
+ "rstrip": false,
1912
+ "single_word": false,
1913
+ "special": true
1914
+ },
1915
+ "128239": {
1916
+ "content": "<|reserved_special_token_231|>",
1917
+ "lstrip": false,
1918
+ "normalized": false,
1919
+ "rstrip": false,
1920
+ "single_word": false,
1921
+ "special": true
1922
+ },
1923
+ "128240": {
1924
+ "content": "<|reserved_special_token_232|>",
1925
+ "lstrip": false,
1926
+ "normalized": false,
1927
+ "rstrip": false,
1928
+ "single_word": false,
1929
+ "special": true
1930
+ },
1931
+ "128241": {
1932
+ "content": "<|reserved_special_token_233|>",
1933
+ "lstrip": false,
1934
+ "normalized": false,
1935
+ "rstrip": false,
1936
+ "single_word": false,
1937
+ "special": true
1938
+ },
1939
+ "128242": {
1940
+ "content": "<|reserved_special_token_234|>",
1941
+ "lstrip": false,
1942
+ "normalized": false,
1943
+ "rstrip": false,
1944
+ "single_word": false,
1945
+ "special": true
1946
+ },
1947
+ "128243": {
1948
+ "content": "<|reserved_special_token_235|>",
1949
+ "lstrip": false,
1950
+ "normalized": false,
1951
+ "rstrip": false,
1952
+ "single_word": false,
1953
+ "special": true
1954
+ },
1955
+ "128244": {
1956
+ "content": "<|reserved_special_token_236|>",
1957
+ "lstrip": false,
1958
+ "normalized": false,
1959
+ "rstrip": false,
1960
+ "single_word": false,
1961
+ "special": true
1962
+ },
1963
+ "128245": {
1964
+ "content": "<|reserved_special_token_237|>",
1965
+ "lstrip": false,
1966
+ "normalized": false,
1967
+ "rstrip": false,
1968
+ "single_word": false,
1969
+ "special": true
1970
+ },
1971
+ "128246": {
1972
+ "content": "<|reserved_special_token_238|>",
1973
+ "lstrip": false,
1974
+ "normalized": false,
1975
+ "rstrip": false,
1976
+ "single_word": false,
1977
+ "special": true
1978
+ },
1979
+ "128247": {
1980
+ "content": "<|reserved_special_token_239|>",
1981
+ "lstrip": false,
1982
+ "normalized": false,
1983
+ "rstrip": false,
1984
+ "single_word": false,
1985
+ "special": true
1986
+ },
1987
+ "128248": {
1988
+ "content": "<|reserved_special_token_240|>",
1989
+ "lstrip": false,
1990
+ "normalized": false,
1991
+ "rstrip": false,
1992
+ "single_word": false,
1993
+ "special": true
1994
+ },
1995
+ "128249": {
1996
+ "content": "<|reserved_special_token_241|>",
1997
+ "lstrip": false,
1998
+ "normalized": false,
1999
+ "rstrip": false,
2000
+ "single_word": false,
2001
+ "special": true
2002
+ },
2003
+ "128250": {
2004
+ "content": "<|reserved_special_token_242|>",
2005
+ "lstrip": false,
2006
+ "normalized": false,
2007
+ "rstrip": false,
2008
+ "single_word": false,
2009
+ "special": true
2010
+ },
2011
+ "128251": {
2012
+ "content": "<|reserved_special_token_243|>",
2013
+ "lstrip": false,
2014
+ "normalized": false,
2015
+ "rstrip": false,
2016
+ "single_word": false,
2017
+ "special": true
2018
+ },
2019
+ "128252": {
2020
+ "content": "<|reserved_special_token_244|>",
2021
+ "lstrip": false,
2022
+ "normalized": false,
2023
+ "rstrip": false,
2024
+ "single_word": false,
2025
+ "special": true
2026
+ },
2027
+ "128253": {
2028
+ "content": "<|reserved_special_token_245|>",
2029
+ "lstrip": false,
2030
+ "normalized": false,
2031
+ "rstrip": false,
2032
+ "single_word": false,
2033
+ "special": true
2034
+ },
2035
+ "128254": {
2036
+ "content": "<|reserved_special_token_246|>",
2037
+ "lstrip": false,
2038
+ "normalized": false,
2039
+ "rstrip": false,
2040
+ "single_word": false,
2041
+ "special": true
2042
+ },
2043
+ "128255": {
2044
+ "content": "<|reserved_special_token_247|>",
2045
+ "lstrip": false,
2046
+ "normalized": false,
2047
+ "rstrip": false,
2048
+ "single_word": false,
2049
+ "special": true
2050
+ }
2051
+ },
2052
+ "bos_token": "<|begin_of_text|>",
2053
+ "chat_template": "{{- bos_token }}\n{%- if custom_tools is defined %}\n {%- set tools = custom_tools %}\n{%- endif %}\n{%- if not tools_in_user_message is defined %}\n {%- set tools_in_user_message = true %}\n{%- endif %}\n{%- if not date_string is defined %}\n {%- set date_string = \"26 Jul 2024\" %}\n{%- endif %}\n{%- if not tools is defined %}\n {%- set tools = none %}\n{%- endif %}\n\n{#- This block extracts the system message, so we can slot it into the right place. #}\n{%- if messages[0]['role'] == 'system' %}\n {%- set system_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n{%- else %}\n {%- set system_message = \"\" %}\n{%- endif %}\n\n{#- System message + builtin tools #}\n{{- \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if builtin_tools is defined or tools is not none %}\n {{- \"Environment: ipython\\n\" }}\n{%- endif %}\n{%- if builtin_tools is defined %}\n {{- \"Tools: \" + builtin_tools | reject('equalto', 'code_interpreter') | join(\", \") + \"\\n\\n\"}}\n{%- endif %}\n{{- \"Cutting Knowledge Date: December 2023\\n\" }}\n{{- \"Today Date: \" + date_string + \"\\n\\n\" }}\n{%- if tools is not none and not tools_in_user_message %}\n {{- \"You have access to the following functions. To call a function, please respond with JSON for a function call.\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n{%- endif %}\n{{- system_message }}\n{{- \"<|eot_id|>\" }}\n\n{#- Custom tools are passed in a user message with some extra guidance #}\n{%- if tools_in_user_message and not tools is none %}\n {#- Extract the first user message so we can plug it in here #}\n {%- if messages | length != 0 %}\n {%- set first_user_message = messages[0]['content']|trim %}\n {%- set messages = messages[1:] %}\n {%- else %}\n {{- raise_exception(\"Cannot put tools in the first user message when there's no first user message!\") }}\n{%- endif %}\n {{- '<|start_header_id|>user<|end_header_id|>\\n\\n' -}}\n {{- \"Given the following functions, please respond with a JSON for a function call \" }}\n {{- \"with its proper arguments that best answers the given prompt.\\n\\n\" }}\n {{- 'Respond in the format {\"name\": function name, \"parameters\": dictionary of argument name and its value}.' }}\n {{- \"Do not use variables.\\n\\n\" }}\n {%- for t in tools %}\n {{- t | tojson(indent=4) }}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- first_user_message + \"<|eot_id|>\"}}\n{%- endif %}\n\n{%- for message in messages %}\n {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}\n {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'+ message['content'] | trim + '<|eot_id|>' }}\n {%- elif 'tool_calls' in message %}\n {%- if not message.tool_calls|length == 1 %}\n {{- raise_exception(\"This model only supports single tool-calls at once!\") }}\n {%- endif %}\n {%- set tool_call = message.tool_calls[0].function %}\n {%- if builtin_tools is defined and tool_call.name in builtin_tools %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- \"<|python_tag|>\" + tool_call.name + \".call(\" }}\n {%- for arg_name, arg_val in tool_call.arguments | items %}\n {{- arg_name + '=\"' + arg_val + '\"' }}\n {%- if not loop.last %}\n {{- \", \" }}\n {%- endif %}\n {%- endfor %}\n {{- \")\" }}\n {%- else %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' -}}\n {{- '{\"name\": \"' + tool_call.name + '\", ' }}\n {{- '\"parameters\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- \"}\" }}\n {%- endif %}\n {%- if builtin_tools is defined %}\n {#- This means we're in ipython mode #}\n {{- \"<|eom_id|>\" }}\n {%- else %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n {%- elif message.role == \"tool\" or message.role == \"ipython\" %}\n {{- \"<|start_header_id|>ipython<|end_header_id|>\\n\\n\" }}\n {%- if message.content is mapping or message.content is iterable %}\n {{- message.content | tojson }}\n {%- else %}\n {{- message.content }}\n {%- endif %}\n {{- \"<|eot_id|>\" }}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif %}\n",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "extra_special_tokens": {},
2057
+ "model_input_names": [
2058
+ "input_ids",
2059
+ "attention_mask"
2060
+ ],
2061
+ "model_max_length": 131072,
2062
+ "tokenizer_class": "PreTrainedTokenizerFast"
2063
+ }
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"tokenizer_class": "CoEncoderDualTokenizer"}