Create README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,77 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
---
|
4 |
+
|
5 |
+
## Meshy ํ
์ค์ฒ๋ง ๋ถ๋ฅ ๋ชจ๋ธ
|
6 |
+
|
7 |
+
### ๐ ๋ชจ๋ธ ์ค๋ช
|
8 |
+
์ด ๋ชจ๋ธ์ **3D ๋ชจ๋ธ ์ธ๋ค์ผ ์ด๋ฏธ์ง**๋ฅผ ์
๋ ฅ์ผ๋ก ๋ฐ์, ์ด๋ฏธ์ง๊ฐ **ํ
์ค์ฒ๋ง ๋์ด ์๋์ง ์๋์ง**๋ฅผ ๋ถ๋ฅํฉ๋๋ค.
|
9 |
+
|
10 |
+
- **ํ์คํฌ**: ์ด์ง ์ด๋ฏธ์ง ๋ถ๋ฅ (Textured vs. Not Textured)
|
11 |
+
- **ํด๋์ค**:
|
12 |
+
- `0`: ํ
์ค์ฒ๋ง ์๋จ
|
13 |
+
- `1`: ํ
์ค์ฒ๋ง ๋จ
|
14 |
+
- **๋ชจ๋ธ ๊ตฌ์กฐ**: ResNet18 (ImageNet ์ฌ์ ํ์ต ์ฌ์ฉ)
|
15 |
+
- **์
๋ ฅ ์ด๋ฏธ์ง ํฌ๊ธฐ**: 224 ร 224 RGB ์ด๋ฏธ์ง
|
16 |
+
- **์ถ๋ ฅ**: 2๊ฐ์ ํด๋์ค์ ๋ํ ๋ก์ง๊ฐ (์ํํธ๋งฅ์ค ์ )
|
17 |
+
|
18 |
+
---
|
19 |
+
|
20 |
+
### ๐ ํ์ต ๋ฐ์ดํฐ
|
21 |
+
- **CSV ํ์ผ**: `meshy_textured_gold.csv`
|
22 |
+
- **์ด๋ฏธ์ง ์ถ์ฒ**: Meshy AI์์ ์์ฑ๋ 3D ์ธ๋ค์ผ ์ด๋ฏธ์ง
|
23 |
+
- **๋ผ๋ฒจ๋ง ๋ฐฉ๋ฒ**: ์ฌ๋์ด ์ง์ ํ
์ค์ฒ๋ง ์ฌ๋ถ๋ฅผ ๋ณด๊ณ ์์์
์ผ๋ก ๋ผ๋ฒจ ๋ถ์ฌ
|
24 |
+
- **์ํ ์**: ์ฝ 500์ฅ (ํ
์ค์ฒ๋ง / ๋นํ
์ค์ฒ๋ง ํด๋์ค ๊ท ํ ์์)
|
25 |
+
|
26 |
+
---
|
27 |
+
|
28 |
+
### ๐ ํ๊ฐ ์ ๋ณด
|
29 |
+
- **ํ๊ฐ์งํ**: ์ ํ๋(Accuracy) ๊ธฐ์ค ์ฝ 90% ์ด์
|
30 |
+
- **์์ค ํจ์**: CrossEntropyLoss
|
31 |
+
- **์ต์ ํ ์๊ณ ๋ฆฌ์ฆ**: Adam (lr=1e-4)
|
32 |
+
|
33 |
+
> ๊ฒ์ฆ ๋ฐ์ดํฐ์
์์๋ ์์ ์ ์ธ ์ฑ๋ฅ์ ๋ณด์์ผ๋ฉฐ, ๋ผ๋ฒจ๊ณผ ์์ธก ๊ฒฐ๊ณผ๋ฅผ ์ด๋ฏธ์ง๋ก ์๊ฐํํ์ฌ ์ฑ๋ฅ์ ์ถ๊ฐ ํ์ธํ์ต๋๋ค.
|
34 |
+
|
35 |
+
---
|
36 |
+
|
37 |
+
### ๐งช ์ฌ์ฉ๋ฒ
|
38 |
+
|
39 |
+
```python
|
40 |
+
from torchvision import transforms, models
|
41 |
+
from PIL import Image
|
42 |
+
import torch
|
43 |
+
|
44 |
+
# ๋ชจ๋ธ ๋ก๋
|
45 |
+
model = models.resnet18()
|
46 |
+
model.fc = torch.nn.Linear(model.fc.in_features, 2)
|
47 |
+
model.load_state_dict(torch.load("pytorch_model.bin", map_location="cpu"))
|
48 |
+
model.eval()
|
49 |
+
|
50 |
+
# ์ ์ฒ๋ฆฌ ์ ์
|
51 |
+
transform = transforms.Compose([
|
52 |
+
transforms.Resize((224, 224)),
|
53 |
+
transforms.ToTensor(),
|
54 |
+
transforms.Normalize([0.485, 0.456, 0.406],
|
55 |
+
[0.229, 0.224, 0.225])
|
56 |
+
])
|
57 |
+
|
58 |
+
# ์์ธก
|
59 |
+
img = Image.open("example.jpg").convert("RGB")
|
60 |
+
x = transform(img).unsqueeze(0)
|
61 |
+
with torch.no_grad():
|
62 |
+
logits = model(x)
|
63 |
+
pred = logits.argmax(dim=1).item()
|
64 |
+
print("ํ
์ค์ฒ๋ง ๋จ" if pred == 1 else "ํ
์ค์ฒ๋ง ์๋จ")
|
65 |
+
```
|
66 |
+
|
67 |
+
---
|
68 |
+
|
69 |
+
### ๐ฏ ์ฌ์ฉ ๋ชฉ์
|
70 |
+
- Meshy์์ ์์ฑ๋ ์ธ๋ค์ผ ์ด๋ฏธ์ง๊ฐ ํ
์ค์ฒ๋ง๋ ๊ฒ์ธ์ง ์๋์ผ๋ก ๊ตฌ๋ถ
|
71 |
+
- ๋๊ท๋ชจ ๋ฐ์ดํฐ์
์ ๋ณ, ํ์ง ๊ด๋ฆฌ, ๋ผ๋ฒจ๋ง ์๊ฐ ๋จ์ถ ๋ฑ์ ํ์ฉ ๊ฐ๋ฅ
|
72 |
+
|
73 |
+
---
|
74 |
+
|
75 |
+
### ๐ท๏ธ ํ๊ทธ
|
76 |
+
`์ด๋ฏธ์ง ๋ถ๋ฅ`, `์ด์ง ๋ถ๋ฅ`, `3D ์ธ๋ค์ผ`, `ํ
์ค์ฒ๋ง ํ๋ณ`, `ResNet`, `Meshy`
|
77 |
+
|