sujr commited on
Commit
4069bbe
·
verified ·
1 Parent(s): 6994c0a

Upload folder using huggingface_hub

Browse files
Files changed (28) hide show
  1. checkpoint-6400/README.md +202 -0
  2. checkpoint-6400/adapter_config.json +380 -0
  3. checkpoint-6400/adapter_model.safetensors +3 -0
  4. checkpoint-6400/global_step6400/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  5. checkpoint-6400/global_step6400/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-6400/global_step6400/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-6400/global_step6400/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-6400/global_step6400/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-6400/global_step6400/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-6400/global_step6400/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-6400/global_step6400/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-6400/global_step6400/mp_rank_00_model_states.pt +3 -0
  13. checkpoint-6400/latest +1 -0
  14. checkpoint-6400/qwen.tiktoken +0 -0
  15. checkpoint-6400/rng_state_0.pth +3 -0
  16. checkpoint-6400/rng_state_1.pth +3 -0
  17. checkpoint-6400/rng_state_2.pth +3 -0
  18. checkpoint-6400/rng_state_3.pth +3 -0
  19. checkpoint-6400/rng_state_4.pth +3 -0
  20. checkpoint-6400/rng_state_5.pth +3 -0
  21. checkpoint-6400/rng_state_6.pth +3 -0
  22. checkpoint-6400/rng_state_7.pth +3 -0
  23. checkpoint-6400/scheduler.pt +3 -0
  24. checkpoint-6400/special_tokens_map.json +3 -0
  25. checkpoint-6400/tokenizer_config.json +14 -0
  26. checkpoint-6400/trainer_state.json +0 -0
  27. checkpoint-6400/training_args.bin +3 -0
  28. checkpoint-6400/zero_to_fp32.py +587 -0
checkpoint-6400/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Qwen/Qwen-VL-Chat
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-6400/adapter_config.json ADDED
@@ -0,0 +1,380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen-VL-Chat",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "transformer.h.16.mlp.w1",
24
+ "transformer.visual.transformer.resblocks.13.attn.out_proj",
25
+ "transformer.h.28.mlp.w1",
26
+ "transformer.h.16.attn.c_attn",
27
+ "transformer.h.3.mlp.w1",
28
+ "transformer.visual.transformer.resblocks.29.attn.in_proj",
29
+ "transformer.visual.transformer.resblocks.19.mlp.c_proj",
30
+ "transformer.visual.transformer.resblocks.47.mlp.c_fc",
31
+ "transformer.visual.transformer.resblocks.34.mlp.c_fc",
32
+ "transformer.visual.transformer.resblocks.4.attn.out_proj",
33
+ "transformer.h.31.attn.c_attn",
34
+ "transformer.h.16.mlp.w2",
35
+ "transformer.visual.transformer.resblocks.5.attn.out_proj",
36
+ "transformer.h.2.mlp.w1",
37
+ "transformer.visual.transformer.resblocks.7.attn.in_proj",
38
+ "transformer.h.20.mlp.w2",
39
+ "transformer.h.19.mlp.w1",
40
+ "transformer.visual.transformer.resblocks.18.mlp.c_fc",
41
+ "transformer.visual.transformer.resblocks.27.attn.out_proj",
42
+ "transformer.visual.transformer.resblocks.10.mlp.c_proj",
43
+ "transformer.visual.transformer.resblocks.43.mlp.c_fc",
44
+ "transformer.h.5.mlp.w1",
45
+ "transformer.visual.transformer.resblocks.15.mlp.c_proj",
46
+ "transformer.visual.transformer.resblocks.25.mlp.c_proj",
47
+ "transformer.visual.transformer.resblocks.10.attn.out_proj",
48
+ "transformer.visual.transformer.resblocks.4.mlp.c_fc",
49
+ "transformer.h.31.mlp.w2",
50
+ "transformer.visual.transformer.resblocks.37.attn.out_proj",
51
+ "transformer.h.8.attn.c_proj",
52
+ "transformer.h.29.attn.c_attn",
53
+ "transformer.visual.transformer.resblocks.24.mlp.c_proj",
54
+ "transformer.h.19.mlp.c_proj",
55
+ "transformer.visual.transformer.resblocks.11.attn.out_proj",
56
+ "transformer.h.13.mlp.c_proj",
57
+ "transformer.h.27.mlp.c_proj",
58
+ "transformer.h.31.mlp.w1",
59
+ "transformer.visual.transformer.resblocks.7.mlp.c_proj",
60
+ "transformer.h.28.mlp.w2",
61
+ "transformer.visual.transformer.resblocks.3.mlp.c_proj",
62
+ "transformer.visual.transformer.resblocks.13.attn.in_proj",
63
+ "transformer.h.21.attn.c_attn",
64
+ "transformer.visual.transformer.resblocks.23.mlp.c_fc",
65
+ "transformer.visual.transformer.resblocks.33.mlp.c_proj",
66
+ "transformer.visual.transformer.resblocks.42.mlp.c_fc",
67
+ "transformer.visual.transformer.resblocks.3.attn.in_proj",
68
+ "transformer.h.13.mlp.w1",
69
+ "transformer.visual.transformer.resblocks.22.attn.out_proj",
70
+ "transformer.visual.transformer.resblocks.20.mlp.c_fc",
71
+ "transformer.h.26.mlp.w2",
72
+ "transformer.h.14.attn.c_attn",
73
+ "transformer.h.16.attn.c_proj",
74
+ "transformer.h.1.mlp.w1",
75
+ "transformer.visual.transformer.resblocks.21.attn.out_proj",
76
+ "transformer.visual.transformer.resblocks.39.mlp.c_proj",
77
+ "transformer.visual.transformer.resblocks.4.attn.in_proj",
78
+ "transformer.h.29.mlp.c_proj",
79
+ "transformer.visual.transformer.resblocks.12.mlp.c_proj",
80
+ "transformer.visual.transformer.resblocks.14.attn.in_proj",
81
+ "transformer.h.28.attn.c_proj",
82
+ "transformer.h.18.mlp.w1",
83
+ "transformer.h.27.mlp.w2",
84
+ "transformer.h.18.attn.c_attn",
85
+ "transformer.visual.transformer.resblocks.33.attn.out_proj",
86
+ "transformer.h.5.mlp.w2",
87
+ "transformer.visual.transformer.resblocks.37.mlp.c_fc",
88
+ "transformer.visual.transformer.resblocks.2.mlp.c_proj",
89
+ "transformer.visual.transformer.resblocks.42.attn.out_proj",
90
+ "transformer.visual.transformer.resblocks.15.attn.in_proj",
91
+ "transformer.visual.transformer.resblocks.6.mlp.c_fc",
92
+ "transformer.h.13.mlp.w2",
93
+ "transformer.h.23.attn.c_proj",
94
+ "transformer.h.20.mlp.c_proj",
95
+ "transformer.h.14.mlp.w2",
96
+ "transformer.visual.transformer.resblocks.9.attn.in_proj",
97
+ "transformer.visual.transformer.resblocks.46.attn.in_proj",
98
+ "transformer.h.9.attn.c_attn",
99
+ "transformer.visual.transformer.resblocks.36.mlp.c_proj",
100
+ "transformer.h.31.attn.c_proj",
101
+ "transformer.visual.transformer.resblocks.19.mlp.c_fc",
102
+ "transformer.h.17.mlp.w1",
103
+ "transformer.h.2.attn.c_proj",
104
+ "transformer.visual.transformer.resblocks.47.attn.in_proj",
105
+ "transformer.visual.transformer.resblocks.45.mlp.c_proj",
106
+ "transformer.visual.transformer.resblocks.46.mlp.c_fc",
107
+ "transformer.visual.transformer.resblocks.27.attn.in_proj",
108
+ "transformer.visual.transformer.resblocks.26.attn.out_proj",
109
+ "transformer.h.22.attn.c_proj",
110
+ "transformer.visual.transformer.resblocks.40.attn.out_proj",
111
+ "transformer.visual.transformer.resblocks.46.mlp.c_proj",
112
+ "transformer.visual.transformer.resblocks.18.attn.out_proj",
113
+ "transformer.h.27.attn.c_proj",
114
+ "transformer.visual.transformer.resblocks.26.attn.in_proj",
115
+ "transformer.h.4.mlp.w1",
116
+ "transformer.h.10.attn.c_proj",
117
+ "transformer.h.6.attn.c_attn",
118
+ "transformer.h.2.attn.c_attn",
119
+ "transformer.h.22.mlp.w1",
120
+ "transformer.visual.transformer.resblocks.39.mlp.c_fc",
121
+ "transformer.h.8.mlp.w2",
122
+ "transformer.h.4.attn.c_attn",
123
+ "transformer.h.26.mlp.c_proj",
124
+ "transformer.visual.transformer.resblocks.29.mlp.c_proj",
125
+ "transformer.visual.transformer.resblocks.5.mlp.c_proj",
126
+ "transformer.h.11.mlp.c_proj",
127
+ "transformer.h.0.mlp.w2",
128
+ "transformer.visual.transformer.resblocks.36.attn.out_proj",
129
+ "transformer.h.29.mlp.w1",
130
+ "transformer.h.12.mlp.c_proj",
131
+ "transformer.visual.transformer.resblocks.2.attn.in_proj",
132
+ "transformer.visual.transformer.resblocks.2.mlp.c_fc",
133
+ "transformer.h.25.attn.c_attn",
134
+ "transformer.visual.transformer.resblocks.19.attn.in_proj",
135
+ "transformer.visual.transformer.resblocks.43.attn.out_proj",
136
+ "transformer.visual.transformer.resblocks.35.attn.out_proj",
137
+ "transformer.h.22.attn.c_attn",
138
+ "transformer.h.0.mlp.w1",
139
+ "transformer.h.3.attn.c_attn",
140
+ "transformer.h.28.attn.c_attn",
141
+ "transformer.visual.transformer.resblocks.25.attn.in_proj",
142
+ "transformer.visual.transformer.resblocks.34.attn.out_proj",
143
+ "transformer.h.21.attn.c_proj",
144
+ "transformer.h.6.attn.c_proj",
145
+ "transformer.visual.transformer.resblocks.11.mlp.c_proj",
146
+ "transformer.h.13.attn.c_attn",
147
+ "transformer.visual.transformer.resblocks.38.attn.out_proj",
148
+ "transformer.h.3.attn.c_proj",
149
+ "transformer.visual.transformer.resblocks.17.mlp.c_fc",
150
+ "transformer.h.26.mlp.w1",
151
+ "transformer.visual.transformer.resblocks.36.mlp.c_fc",
152
+ "transformer.h.26.attn.c_attn",
153
+ "transformer.visual.transformer.resblocks.29.attn.out_proj",
154
+ "transformer.h.7.mlp.w1",
155
+ "transformer.visual.transformer.resblocks.40.mlp.c_fc",
156
+ "transformer.visual.transformer.resblocks.9.attn.out_proj",
157
+ "transformer.h.3.mlp.c_proj",
158
+ "transformer.visual.transformer.resblocks.26.mlp.c_fc",
159
+ "transformer.h.11.mlp.w2",
160
+ "transformer.visual.transformer.resblocks.33.attn.in_proj",
161
+ "transformer.visual.transformer.resblocks.42.mlp.c_proj",
162
+ "transformer.visual.transformer.resblocks.32.attn.out_proj",
163
+ "transformer.h.4.attn.c_proj",
164
+ "transformer.visual.transformer.resblocks.27.mlp.c_fc",
165
+ "transformer.visual.transformer.resblocks.11.mlp.c_fc",
166
+ "transformer.visual.transformer.resblocks.25.attn.out_proj",
167
+ "transformer.visual.transformer.resblocks.23.attn.in_proj",
168
+ "transformer.h.5.attn.c_attn",
169
+ "transformer.h.16.mlp.c_proj",
170
+ "transformer.visual.transformer.resblocks.14.mlp.c_proj",
171
+ "transformer.h.22.mlp.w2",
172
+ "transformer.h.25.mlp.c_proj",
173
+ "transformer.visual.transformer.resblocks.10.mlp.c_fc",
174
+ "transformer.h.24.mlp.c_proj",
175
+ "transformer.h.19.mlp.w2",
176
+ "transformer.h.14.mlp.w1",
177
+ "transformer.visual.transformer.resblocks.40.mlp.c_proj",
178
+ "transformer.visual.transformer.resblocks.28.attn.out_proj",
179
+ "transformer.visual.transformer.resblocks.24.mlp.c_fc",
180
+ "transformer.h.8.attn.c_attn",
181
+ "transformer.h.9.mlp.w1",
182
+ "transformer.h.6.mlp.c_proj",
183
+ "transformer.visual.transformer.resblocks.19.attn.out_proj",
184
+ "transformer.visual.transformer.resblocks.32.mlp.c_fc",
185
+ "transformer.visual.transformer.resblocks.7.mlp.c_fc",
186
+ "transformer.visual.transformer.resblocks.44.attn.in_proj",
187
+ "transformer.visual.transformer.resblocks.34.mlp.c_proj",
188
+ "transformer.visual.transformer.resblocks.9.mlp.c_fc",
189
+ "transformer.visual.conv1",
190
+ "transformer.visual.transformer.resblocks.8.attn.out_proj",
191
+ "transformer.h.23.mlp.w2",
192
+ "transformer.h.7.mlp.w2",
193
+ "transformer.h.24.attn.c_proj",
194
+ "transformer.h.30.attn.c_proj",
195
+ "transformer.h.29.attn.c_proj",
196
+ "transformer.visual.transformer.resblocks.9.mlp.c_proj",
197
+ "transformer.visual.transformer.resblocks.35.attn.in_proj",
198
+ "transformer.visual.transformer.resblocks.21.mlp.c_fc",
199
+ "transformer.visual.transformer.resblocks.41.mlp.c_proj",
200
+ "transformer.visual.transformer.resblocks.38.mlp.c_fc",
201
+ "transformer.visual.transformer.resblocks.13.mlp.c_proj",
202
+ "transformer.visual.transformer.resblocks.41.attn.out_proj",
203
+ "transformer.visual.transformer.resblocks.16.mlp.c_fc",
204
+ "transformer.visual.transformer.resblocks.45.attn.out_proj",
205
+ "transformer.h.11.mlp.w1",
206
+ "transformer.visual.transformer.resblocks.16.attn.in_proj",
207
+ "transformer.visual.transformer.resblocks.47.attn.out_proj",
208
+ "transformer.h.9.attn.c_proj",
209
+ "transformer.h.31.mlp.c_proj",
210
+ "transformer.visual.transformer.resblocks.12.attn.in_proj",
211
+ "transformer.visual.transformer.resblocks.28.mlp.c_proj",
212
+ "transformer.visual.transformer.resblocks.20.attn.out_proj",
213
+ "transformer.h.12.attn.c_attn",
214
+ "transformer.h.24.mlp.w1",
215
+ "transformer.visual.transformer.resblocks.21.attn.in_proj",
216
+ "transformer.visual.transformer.resblocks.41.attn.in_proj",
217
+ "transformer.h.10.mlp.w1",
218
+ "transformer.h.1.mlp.w2",
219
+ "transformer.h.0.mlp.c_proj",
220
+ "transformer.h.22.mlp.c_proj",
221
+ "transformer.visual.transformer.resblocks.18.attn.in_proj",
222
+ "transformer.visual.transformer.resblocks.38.mlp.c_proj",
223
+ "transformer.h.12.mlp.w1",
224
+ "transformer.h.1.attn.c_attn",
225
+ "transformer.visual.transformer.resblocks.31.mlp.c_proj",
226
+ "transformer.visual.transformer.resblocks.44.mlp.c_proj",
227
+ "transformer.h.15.mlp.c_proj",
228
+ "transformer.h.6.mlp.w1",
229
+ "transformer.visual.transformer.resblocks.16.mlp.c_proj",
230
+ "transformer.h.13.attn.c_proj",
231
+ "transformer.h.15.attn.c_attn",
232
+ "transformer.h.15.mlp.w1",
233
+ "transformer.h.17.mlp.w2",
234
+ "transformer.visual.transformer.resblocks.10.attn.in_proj",
235
+ "transformer.h.26.attn.c_proj",
236
+ "transformer.visual.transformer.resblocks.20.attn.in_proj",
237
+ "transformer.h.10.mlp.w2",
238
+ "transformer.h.24.attn.c_attn",
239
+ "transformer.h.8.mlp.w1",
240
+ "transformer.h.23.mlp.w1",
241
+ "transformer.visual.transformer.resblocks.1.mlp.c_proj",
242
+ "transformer.h.4.mlp.w2",
243
+ "transformer.visual.transformer.resblocks.38.attn.in_proj",
244
+ "transformer.h.12.mlp.w2",
245
+ "transformer.h.7.attn.c_proj",
246
+ "transformer.h.4.mlp.c_proj",
247
+ "transformer.visual.transformer.resblocks.31.attn.out_proj",
248
+ "transformer.visual.transformer.resblocks.17.mlp.c_proj",
249
+ "transformer.h.21.mlp.w2",
250
+ "transformer.visual.transformer.resblocks.5.attn.in_proj",
251
+ "transformer.h.18.attn.c_proj",
252
+ "transformer.visual.transformer.resblocks.31.mlp.c_fc",
253
+ "transformer.h.18.mlp.w2",
254
+ "transformer.visual.transformer.resblocks.6.attn.out_proj",
255
+ "transformer.visual.transformer.resblocks.8.attn.in_proj",
256
+ "transformer.visual.transformer.resblocks.30.mlp.c_proj",
257
+ "transformer.h.30.mlp.c_proj",
258
+ "transformer.visual.transformer.resblocks.30.attn.out_proj",
259
+ "transformer.visual.transformer.resblocks.16.attn.out_proj",
260
+ "transformer.visual.transformer.resblocks.14.attn.out_proj",
261
+ "transformer.h.25.mlp.w1",
262
+ "transformer.visual.transformer.resblocks.45.attn.in_proj",
263
+ "transformer.h.11.attn.c_proj",
264
+ "transformer.visual.transformer.resblocks.30.attn.in_proj",
265
+ "transformer.visual.transformer.resblocks.43.mlp.c_proj",
266
+ "transformer.h.10.mlp.c_proj",
267
+ "transformer.h.21.mlp.c_proj",
268
+ "transformer.visual.transformer.resblocks.43.attn.in_proj",
269
+ "transformer.visual.transformer.resblocks.3.mlp.c_fc",
270
+ "transformer.visual.transformer.resblocks.44.attn.out_proj",
271
+ "transformer.h.23.attn.c_attn",
272
+ "transformer.visual.transformer.resblocks.22.attn.in_proj",
273
+ "transformer.visual.transformer.resblocks.6.attn.in_proj",
274
+ "transformer.visual.transformer.resblocks.44.mlp.c_fc",
275
+ "transformer.h.17.attn.c_attn",
276
+ "transformer.h.7.attn.c_attn",
277
+ "transformer.visual.transformer.resblocks.42.attn.in_proj",
278
+ "transformer.visual.transformer.resblocks.20.mlp.c_proj",
279
+ "transformer.h.8.mlp.c_proj",
280
+ "transformer.visual.transformer.resblocks.17.attn.out_proj",
281
+ "transformer.h.14.attn.c_proj",
282
+ "transformer.visual.transformer.resblocks.40.attn.in_proj",
283
+ "transformer.h.25.attn.c_proj",
284
+ "transformer.h.28.mlp.c_proj",
285
+ "transformer.visual.transformer.resblocks.35.mlp.c_proj",
286
+ "transformer.visual.transformer.resblocks.36.attn.in_proj",
287
+ "transformer.visual.transformer.resblocks.41.mlp.c_fc",
288
+ "transformer.visual.transformer.resblocks.14.mlp.c_fc",
289
+ "transformer.h.30.mlp.w2",
290
+ "transformer.h.20.mlp.w1",
291
+ "transformer.visual.transformer.resblocks.33.mlp.c_fc",
292
+ "transformer.h.29.mlp.w2",
293
+ "transformer.visual.transformer.resblocks.47.mlp.c_proj",
294
+ "transformer.visual.transformer.resblocks.30.mlp.c_fc",
295
+ "transformer.h.10.attn.c_attn",
296
+ "transformer.visual.transformer.resblocks.1.attn.in_proj",
297
+ "transformer.h.1.attn.c_proj",
298
+ "transformer.visual.transformer.resblocks.8.mlp.c_proj",
299
+ "transformer.h.19.attn.c_proj",
300
+ "transformer.visual.transformer.resblocks.37.attn.in_proj",
301
+ "transformer.h.15.attn.c_proj",
302
+ "transformer.h.5.attn.c_proj",
303
+ "transformer.visual.transformer.resblocks.32.mlp.c_proj",
304
+ "transformer.visual.transformer.resblocks.3.attn.out_proj",
305
+ "transformer.visual.transformer.resblocks.32.attn.in_proj",
306
+ "transformer.h.21.mlp.w1",
307
+ "transformer.h.23.mlp.c_proj",
308
+ "transformer.h.30.mlp.w1",
309
+ "transformer.h.0.attn.c_attn",
310
+ "transformer.visual.transformer.resblocks.24.attn.out_proj",
311
+ "transformer.visual.transformer.resblocks.31.attn.in_proj",
312
+ "transformer.h.18.mlp.c_proj",
313
+ "transformer.visual.transformer.resblocks.25.mlp.c_fc",
314
+ "transformer.visual.transformer.resblocks.22.mlp.c_fc",
315
+ "transformer.h.30.attn.c_attn",
316
+ "transformer.visual.transformer.resblocks.13.mlp.c_fc",
317
+ "transformer.h.17.mlp.c_proj",
318
+ "transformer.visual.transformer.resblocks.24.attn.in_proj",
319
+ "transformer.h.11.attn.c_attn",
320
+ "transformer.h.2.mlp.w2",
321
+ "transformer.visual.transformer.resblocks.8.mlp.c_fc",
322
+ "transformer.visual.transformer.resblocks.0.mlp.c_fc",
323
+ "transformer.visual.transformer.resblocks.2.attn.out_proj",
324
+ "transformer.visual.transformer.resblocks.35.mlp.c_fc",
325
+ "transformer.visual.transformer.resblocks.39.attn.out_proj",
326
+ "transformer.h.12.attn.c_proj",
327
+ "transformer.visual.transformer.resblocks.28.attn.in_proj",
328
+ "transformer.visual.transformer.resblocks.29.mlp.c_fc",
329
+ "transformer.visual.transformer.resblocks.0.attn.out_proj",
330
+ "transformer.visual.transformer.resblocks.23.mlp.c_proj",
331
+ "transformer.h.20.attn.c_attn",
332
+ "transformer.visual.transformer.resblocks.7.attn.out_proj",
333
+ "transformer.visual.transformer.resblocks.15.attn.out_proj",
334
+ "transformer.h.7.mlp.c_proj",
335
+ "transformer.visual.transformer.resblocks.1.attn.out_proj",
336
+ "transformer.h.3.mlp.w2",
337
+ "transformer.h.9.mlp.w2",
338
+ "transformer.visual.transformer.resblocks.34.attn.in_proj",
339
+ "transformer.h.27.attn.c_attn",
340
+ "transformer.visual.transformer.resblocks.12.mlp.c_fc",
341
+ "transformer.h.6.mlp.w2",
342
+ "transformer.visual.transformer.resblocks.39.attn.in_proj",
343
+ "transformer.h.15.mlp.w2",
344
+ "transformer.visual.transformer.resblocks.18.mlp.c_proj",
345
+ "transformer.h.0.attn.c_proj",
346
+ "transformer.h.19.attn.c_attn",
347
+ "transformer.visual.transformer.resblocks.27.mlp.c_proj",
348
+ "transformer.visual.transformer.resblocks.23.attn.out_proj",
349
+ "transformer.h.14.mlp.c_proj",
350
+ "transformer.h.9.mlp.c_proj",
351
+ "transformer.visual.transformer.resblocks.12.attn.out_proj",
352
+ "transformer.visual.transformer.resblocks.0.mlp.c_proj",
353
+ "transformer.visual.transformer.resblocks.5.mlp.c_fc",
354
+ "transformer.visual.transformer.resblocks.28.mlp.c_fc",
355
+ "transformer.visual.transformer.resblocks.6.mlp.c_proj",
356
+ "transformer.visual.transformer.resblocks.22.mlp.c_proj",
357
+ "transformer.visual.transformer.resblocks.37.mlp.c_proj",
358
+ "transformer.visual.transformer.resblocks.17.attn.in_proj",
359
+ "transformer.visual.transformer.resblocks.46.attn.out_proj",
360
+ "transformer.h.24.mlp.w2",
361
+ "transformer.h.27.mlp.w1",
362
+ "transformer.visual.transformer.resblocks.11.attn.in_proj",
363
+ "transformer.visual.transformer.resblocks.4.mlp.c_proj",
364
+ "transformer.visual.transformer.resblocks.21.mlp.c_proj",
365
+ "transformer.visual.transformer.resblocks.26.mlp.c_proj",
366
+ "transformer.visual.transformer.resblocks.15.mlp.c_fc",
367
+ "transformer.h.2.mlp.c_proj",
368
+ "transformer.h.1.mlp.c_proj",
369
+ "transformer.h.5.mlp.c_proj",
370
+ "transformer.visual.transformer.resblocks.45.mlp.c_fc",
371
+ "transformer.visual.transformer.resblocks.0.attn.in_proj",
372
+ "transformer.h.25.mlp.w2",
373
+ "transformer.h.20.attn.c_proj",
374
+ "transformer.h.17.attn.c_proj",
375
+ "transformer.visual.transformer.resblocks.1.mlp.c_fc"
376
+ ],
377
+ "task_type": "CAUSAL_LM",
378
+ "use_dora": false,
379
+ "use_rslora": false
380
+ }
checkpoint-6400/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80e42083bdca61972919104463199005629dcf57ad95321c9d3d0f4bf59e88da
3
+ size 469105640
checkpoint-6400/global_step6400/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62ff587eafbf6555708abd4e31d0100f65a10a93b980a53ee93b4762da3d5c0d
3
+ size 351761648
checkpoint-6400/global_step6400/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3dc3dede0343df1a2361490b022e860649364216fb715e34bf4d02abe01663f
3
+ size 351761776
checkpoint-6400/global_step6400/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5db14674543580f966b0909ee1b073562ee6c04dcf9b65d57659a757e32b1481
3
+ size 351761776
checkpoint-6400/global_step6400/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fc1abd6c0cc539581268653cf8d73fb76bd56f6f3281d656d28c2e8ba0354cd
3
+ size 351761584
checkpoint-6400/global_step6400/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c381a9e25ba3d99c110a1103e04da0e58a86ad6bd6717c58002fb71d5255aa97
3
+ size 351763184
checkpoint-6400/global_step6400/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81e2a071c129a3724ac933139cf0ed79609570e9325847077801fd77cbcf1e50
3
+ size 351771440
checkpoint-6400/global_step6400/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d8ea5d18335cbe6ea759bb469775ea8ed0e503c2b4f8651f635d0bfbbd662d97
3
+ size 351771632
checkpoint-6400/global_step6400/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9fe510b4b2e1803e894dc1376fdfff3a96cecda5849e352693e540b93ee9284
3
+ size 351771312
checkpoint-6400/global_step6400/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:233bff8ba44a9fbee04a4aba04686cd2bc621a6a6802a99095ef0953a9bf777e
3
+ size 469584556
checkpoint-6400/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step6400
checkpoint-6400/qwen.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-6400/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed6997af4c5d0a1613cfa1966ed807152bfd0916c86661e259f25aa670bcce5b
3
+ size 15920
checkpoint-6400/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f4807c0e72503d3cbe7bb4bbf6e6f221313a1ceefdd94cf3ae9cb5a2127ba5f0
3
+ size 15920
checkpoint-6400/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdcd1f55a87f6eaa44c65f63b5b2e45756288a507072081de50d6248c4248b38
3
+ size 15920
checkpoint-6400/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76bbcd752a47b394cce0344c6beba751447fe78c442f712ee8765b45f9397660
3
+ size 15920
checkpoint-6400/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4ea9d2162a03f82c65a6b54d01963000f3f811ebe77a72f2eaa0ba2bed9764f
3
+ size 15920
checkpoint-6400/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6e7c51b91dc335ea3daf6ffe9ad2e3ce82b2747bfae6fc290dfc5ff164b5f0c
3
+ size 15920
checkpoint-6400/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e4d2d61b91a44125b0de8d4c030f777be987ac5c23b0604fe9b2d06d7dff929
3
+ size 15920
checkpoint-6400/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6fda738b2c4c75c4631cb70c5f0d6fabdce70bf774af351bba504dd940a077a
3
+ size 15920
checkpoint-6400/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c868cc8d0afbf490346c7ce69ee573c5502beab0fe16476cce3ceabef12c4608
3
+ size 1064
checkpoint-6400/special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "pad_token": "<|endoftext|>"
3
+ }
checkpoint-6400/tokenizer_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {},
3
+ "auto_map": {
4
+ "AutoTokenizer": [
5
+ "Qwen/Qwen-VL-Chat--tokenization_qwen.QWenTokenizer",
6
+ null
7
+ ]
8
+ },
9
+ "clean_up_tokenization_spaces": true,
10
+ "model_max_length": 768,
11
+ "pad_token": "<|endoftext|>",
12
+ "padding_side": "right",
13
+ "tokenizer_class": "QWenTokenizer"
14
+ }
checkpoint-6400/trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-6400/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3a6a5052a9445cc570063f5939fdeea3ff8007e9c2718674bb335b9eea0bfff
3
+ size 6520
checkpoint-6400/zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)