sujr commited on
Commit
91e3d39
·
verified ·
1 Parent(s): 8a3746a

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. checkpoint-5200/README.md +202 -0
  2. checkpoint-5200/adapter_config.json +380 -0
  3. checkpoint-5200/adapter_model.safetensors +3 -0
  4. checkpoint-5200/global_step5200/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  5. checkpoint-5200/global_step5200/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  6. checkpoint-5200/global_step5200/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  7. checkpoint-5200/global_step5200/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  8. checkpoint-5200/global_step5200/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  9. checkpoint-5200/global_step5200/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  10. checkpoint-5200/global_step5200/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  11. checkpoint-5200/global_step5200/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  12. checkpoint-5200/global_step5200/mp_rank_00_model_states.pt +3 -0
  13. checkpoint-5200/latest +1 -0
  14. checkpoint-5200/qwen.tiktoken +0 -0
  15. checkpoint-5200/rng_state_0.pth +3 -0
  16. checkpoint-5200/rng_state_1.pth +3 -0
  17. checkpoint-5200/rng_state_2.pth +3 -0
  18. checkpoint-5200/rng_state_3.pth +3 -0
  19. checkpoint-5200/rng_state_4.pth +3 -0
  20. checkpoint-5200/rng_state_5.pth +3 -0
  21. checkpoint-5200/rng_state_6.pth +3 -0
  22. checkpoint-5200/rng_state_7.pth +3 -0
  23. checkpoint-5200/scheduler.pt +3 -0
  24. checkpoint-5200/special_tokens_map.json +3 -0
  25. checkpoint-5200/tokenizer_config.json +14 -0
  26. checkpoint-5200/trainer_state.json +3673 -0
  27. checkpoint-5200/training_args.bin +3 -0
  28. checkpoint-5200/zero_to_fp32.py +587 -0
  29. checkpoint-5600/README.md +202 -0
  30. checkpoint-5600/adapter_config.json +380 -0
  31. checkpoint-5600/adapter_model.safetensors +3 -0
  32. checkpoint-5600/global_step5600/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  33. checkpoint-5600/global_step5600/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  34. checkpoint-5600/global_step5600/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  35. checkpoint-5600/global_step5600/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  36. checkpoint-5600/global_step5600/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  37. checkpoint-5600/global_step5600/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  38. checkpoint-5600/global_step5600/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  39. checkpoint-5600/global_step5600/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
  40. checkpoint-5600/global_step5600/mp_rank_00_model_states.pt +3 -0
  41. checkpoint-5600/latest +1 -0
  42. checkpoint-5600/qwen.tiktoken +0 -0
  43. checkpoint-5600/rng_state_0.pth +3 -0
  44. checkpoint-5600/rng_state_1.pth +3 -0
  45. checkpoint-5600/rng_state_2.pth +3 -0
  46. checkpoint-5600/rng_state_3.pth +3 -0
  47. checkpoint-5600/rng_state_4.pth +3 -0
  48. checkpoint-5600/rng_state_5.pth +3 -0
  49. checkpoint-5600/rng_state_6.pth +3 -0
  50. checkpoint-5600/rng_state_7.pth +3 -0
checkpoint-5200/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Qwen/Qwen-VL-Chat
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-5200/adapter_config.json ADDED
@@ -0,0 +1,380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen-VL-Chat",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "transformer.h.16.mlp.w1",
24
+ "transformer.visual.transformer.resblocks.13.attn.out_proj",
25
+ "transformer.h.28.mlp.w1",
26
+ "transformer.h.16.attn.c_attn",
27
+ "transformer.h.3.mlp.w1",
28
+ "transformer.visual.transformer.resblocks.29.attn.in_proj",
29
+ "transformer.visual.transformer.resblocks.19.mlp.c_proj",
30
+ "transformer.visual.transformer.resblocks.47.mlp.c_fc",
31
+ "transformer.visual.transformer.resblocks.34.mlp.c_fc",
32
+ "transformer.visual.transformer.resblocks.4.attn.out_proj",
33
+ "transformer.h.31.attn.c_attn",
34
+ "transformer.h.16.mlp.w2",
35
+ "transformer.visual.transformer.resblocks.5.attn.out_proj",
36
+ "transformer.h.2.mlp.w1",
37
+ "transformer.visual.transformer.resblocks.7.attn.in_proj",
38
+ "transformer.h.20.mlp.w2",
39
+ "transformer.h.19.mlp.w1",
40
+ "transformer.visual.transformer.resblocks.18.mlp.c_fc",
41
+ "transformer.visual.transformer.resblocks.27.attn.out_proj",
42
+ "transformer.visual.transformer.resblocks.10.mlp.c_proj",
43
+ "transformer.visual.transformer.resblocks.43.mlp.c_fc",
44
+ "transformer.h.5.mlp.w1",
45
+ "transformer.visual.transformer.resblocks.15.mlp.c_proj",
46
+ "transformer.visual.transformer.resblocks.25.mlp.c_proj",
47
+ "transformer.visual.transformer.resblocks.10.attn.out_proj",
48
+ "transformer.visual.transformer.resblocks.4.mlp.c_fc",
49
+ "transformer.h.31.mlp.w2",
50
+ "transformer.visual.transformer.resblocks.37.attn.out_proj",
51
+ "transformer.h.8.attn.c_proj",
52
+ "transformer.h.29.attn.c_attn",
53
+ "transformer.visual.transformer.resblocks.24.mlp.c_proj",
54
+ "transformer.h.19.mlp.c_proj",
55
+ "transformer.visual.transformer.resblocks.11.attn.out_proj",
56
+ "transformer.h.13.mlp.c_proj",
57
+ "transformer.h.27.mlp.c_proj",
58
+ "transformer.h.31.mlp.w1",
59
+ "transformer.visual.transformer.resblocks.7.mlp.c_proj",
60
+ "transformer.h.28.mlp.w2",
61
+ "transformer.visual.transformer.resblocks.3.mlp.c_proj",
62
+ "transformer.visual.transformer.resblocks.13.attn.in_proj",
63
+ "transformer.h.21.attn.c_attn",
64
+ "transformer.visual.transformer.resblocks.23.mlp.c_fc",
65
+ "transformer.visual.transformer.resblocks.33.mlp.c_proj",
66
+ "transformer.visual.transformer.resblocks.42.mlp.c_fc",
67
+ "transformer.visual.transformer.resblocks.3.attn.in_proj",
68
+ "transformer.h.13.mlp.w1",
69
+ "transformer.visual.transformer.resblocks.22.attn.out_proj",
70
+ "transformer.visual.transformer.resblocks.20.mlp.c_fc",
71
+ "transformer.h.26.mlp.w2",
72
+ "transformer.h.14.attn.c_attn",
73
+ "transformer.h.16.attn.c_proj",
74
+ "transformer.h.1.mlp.w1",
75
+ "transformer.visual.transformer.resblocks.21.attn.out_proj",
76
+ "transformer.visual.transformer.resblocks.39.mlp.c_proj",
77
+ "transformer.visual.transformer.resblocks.4.attn.in_proj",
78
+ "transformer.h.29.mlp.c_proj",
79
+ "transformer.visual.transformer.resblocks.12.mlp.c_proj",
80
+ "transformer.visual.transformer.resblocks.14.attn.in_proj",
81
+ "transformer.h.28.attn.c_proj",
82
+ "transformer.h.18.mlp.w1",
83
+ "transformer.h.27.mlp.w2",
84
+ "transformer.h.18.attn.c_attn",
85
+ "transformer.visual.transformer.resblocks.33.attn.out_proj",
86
+ "transformer.h.5.mlp.w2",
87
+ "transformer.visual.transformer.resblocks.37.mlp.c_fc",
88
+ "transformer.visual.transformer.resblocks.2.mlp.c_proj",
89
+ "transformer.visual.transformer.resblocks.42.attn.out_proj",
90
+ "transformer.visual.transformer.resblocks.15.attn.in_proj",
91
+ "transformer.visual.transformer.resblocks.6.mlp.c_fc",
92
+ "transformer.h.13.mlp.w2",
93
+ "transformer.h.23.attn.c_proj",
94
+ "transformer.h.20.mlp.c_proj",
95
+ "transformer.h.14.mlp.w2",
96
+ "transformer.visual.transformer.resblocks.9.attn.in_proj",
97
+ "transformer.visual.transformer.resblocks.46.attn.in_proj",
98
+ "transformer.h.9.attn.c_attn",
99
+ "transformer.visual.transformer.resblocks.36.mlp.c_proj",
100
+ "transformer.h.31.attn.c_proj",
101
+ "transformer.visual.transformer.resblocks.19.mlp.c_fc",
102
+ "transformer.h.17.mlp.w1",
103
+ "transformer.h.2.attn.c_proj",
104
+ "transformer.visual.transformer.resblocks.47.attn.in_proj",
105
+ "transformer.visual.transformer.resblocks.45.mlp.c_proj",
106
+ "transformer.visual.transformer.resblocks.46.mlp.c_fc",
107
+ "transformer.visual.transformer.resblocks.27.attn.in_proj",
108
+ "transformer.visual.transformer.resblocks.26.attn.out_proj",
109
+ "transformer.h.22.attn.c_proj",
110
+ "transformer.visual.transformer.resblocks.40.attn.out_proj",
111
+ "transformer.visual.transformer.resblocks.46.mlp.c_proj",
112
+ "transformer.visual.transformer.resblocks.18.attn.out_proj",
113
+ "transformer.h.27.attn.c_proj",
114
+ "transformer.visual.transformer.resblocks.26.attn.in_proj",
115
+ "transformer.h.4.mlp.w1",
116
+ "transformer.h.10.attn.c_proj",
117
+ "transformer.h.6.attn.c_attn",
118
+ "transformer.h.2.attn.c_attn",
119
+ "transformer.h.22.mlp.w1",
120
+ "transformer.visual.transformer.resblocks.39.mlp.c_fc",
121
+ "transformer.h.8.mlp.w2",
122
+ "transformer.h.4.attn.c_attn",
123
+ "transformer.h.26.mlp.c_proj",
124
+ "transformer.visual.transformer.resblocks.29.mlp.c_proj",
125
+ "transformer.visual.transformer.resblocks.5.mlp.c_proj",
126
+ "transformer.h.11.mlp.c_proj",
127
+ "transformer.h.0.mlp.w2",
128
+ "transformer.visual.transformer.resblocks.36.attn.out_proj",
129
+ "transformer.h.29.mlp.w1",
130
+ "transformer.h.12.mlp.c_proj",
131
+ "transformer.visual.transformer.resblocks.2.attn.in_proj",
132
+ "transformer.visual.transformer.resblocks.2.mlp.c_fc",
133
+ "transformer.h.25.attn.c_attn",
134
+ "transformer.visual.transformer.resblocks.19.attn.in_proj",
135
+ "transformer.visual.transformer.resblocks.43.attn.out_proj",
136
+ "transformer.visual.transformer.resblocks.35.attn.out_proj",
137
+ "transformer.h.22.attn.c_attn",
138
+ "transformer.h.0.mlp.w1",
139
+ "transformer.h.3.attn.c_attn",
140
+ "transformer.h.28.attn.c_attn",
141
+ "transformer.visual.transformer.resblocks.25.attn.in_proj",
142
+ "transformer.visual.transformer.resblocks.34.attn.out_proj",
143
+ "transformer.h.21.attn.c_proj",
144
+ "transformer.h.6.attn.c_proj",
145
+ "transformer.visual.transformer.resblocks.11.mlp.c_proj",
146
+ "transformer.h.13.attn.c_attn",
147
+ "transformer.visual.transformer.resblocks.38.attn.out_proj",
148
+ "transformer.h.3.attn.c_proj",
149
+ "transformer.visual.transformer.resblocks.17.mlp.c_fc",
150
+ "transformer.h.26.mlp.w1",
151
+ "transformer.visual.transformer.resblocks.36.mlp.c_fc",
152
+ "transformer.h.26.attn.c_attn",
153
+ "transformer.visual.transformer.resblocks.29.attn.out_proj",
154
+ "transformer.h.7.mlp.w1",
155
+ "transformer.visual.transformer.resblocks.40.mlp.c_fc",
156
+ "transformer.visual.transformer.resblocks.9.attn.out_proj",
157
+ "transformer.h.3.mlp.c_proj",
158
+ "transformer.visual.transformer.resblocks.26.mlp.c_fc",
159
+ "transformer.h.11.mlp.w2",
160
+ "transformer.visual.transformer.resblocks.33.attn.in_proj",
161
+ "transformer.visual.transformer.resblocks.42.mlp.c_proj",
162
+ "transformer.visual.transformer.resblocks.32.attn.out_proj",
163
+ "transformer.h.4.attn.c_proj",
164
+ "transformer.visual.transformer.resblocks.27.mlp.c_fc",
165
+ "transformer.visual.transformer.resblocks.11.mlp.c_fc",
166
+ "transformer.visual.transformer.resblocks.25.attn.out_proj",
167
+ "transformer.visual.transformer.resblocks.23.attn.in_proj",
168
+ "transformer.h.5.attn.c_attn",
169
+ "transformer.h.16.mlp.c_proj",
170
+ "transformer.visual.transformer.resblocks.14.mlp.c_proj",
171
+ "transformer.h.22.mlp.w2",
172
+ "transformer.h.25.mlp.c_proj",
173
+ "transformer.visual.transformer.resblocks.10.mlp.c_fc",
174
+ "transformer.h.24.mlp.c_proj",
175
+ "transformer.h.19.mlp.w2",
176
+ "transformer.h.14.mlp.w1",
177
+ "transformer.visual.transformer.resblocks.40.mlp.c_proj",
178
+ "transformer.visual.transformer.resblocks.28.attn.out_proj",
179
+ "transformer.visual.transformer.resblocks.24.mlp.c_fc",
180
+ "transformer.h.8.attn.c_attn",
181
+ "transformer.h.9.mlp.w1",
182
+ "transformer.h.6.mlp.c_proj",
183
+ "transformer.visual.transformer.resblocks.19.attn.out_proj",
184
+ "transformer.visual.transformer.resblocks.32.mlp.c_fc",
185
+ "transformer.visual.transformer.resblocks.7.mlp.c_fc",
186
+ "transformer.visual.transformer.resblocks.44.attn.in_proj",
187
+ "transformer.visual.transformer.resblocks.34.mlp.c_proj",
188
+ "transformer.visual.transformer.resblocks.9.mlp.c_fc",
189
+ "transformer.visual.conv1",
190
+ "transformer.visual.transformer.resblocks.8.attn.out_proj",
191
+ "transformer.h.23.mlp.w2",
192
+ "transformer.h.7.mlp.w2",
193
+ "transformer.h.24.attn.c_proj",
194
+ "transformer.h.30.attn.c_proj",
195
+ "transformer.h.29.attn.c_proj",
196
+ "transformer.visual.transformer.resblocks.9.mlp.c_proj",
197
+ "transformer.visual.transformer.resblocks.35.attn.in_proj",
198
+ "transformer.visual.transformer.resblocks.21.mlp.c_fc",
199
+ "transformer.visual.transformer.resblocks.41.mlp.c_proj",
200
+ "transformer.visual.transformer.resblocks.38.mlp.c_fc",
201
+ "transformer.visual.transformer.resblocks.13.mlp.c_proj",
202
+ "transformer.visual.transformer.resblocks.41.attn.out_proj",
203
+ "transformer.visual.transformer.resblocks.16.mlp.c_fc",
204
+ "transformer.visual.transformer.resblocks.45.attn.out_proj",
205
+ "transformer.h.11.mlp.w1",
206
+ "transformer.visual.transformer.resblocks.16.attn.in_proj",
207
+ "transformer.visual.transformer.resblocks.47.attn.out_proj",
208
+ "transformer.h.9.attn.c_proj",
209
+ "transformer.h.31.mlp.c_proj",
210
+ "transformer.visual.transformer.resblocks.12.attn.in_proj",
211
+ "transformer.visual.transformer.resblocks.28.mlp.c_proj",
212
+ "transformer.visual.transformer.resblocks.20.attn.out_proj",
213
+ "transformer.h.12.attn.c_attn",
214
+ "transformer.h.24.mlp.w1",
215
+ "transformer.visual.transformer.resblocks.21.attn.in_proj",
216
+ "transformer.visual.transformer.resblocks.41.attn.in_proj",
217
+ "transformer.h.10.mlp.w1",
218
+ "transformer.h.1.mlp.w2",
219
+ "transformer.h.0.mlp.c_proj",
220
+ "transformer.h.22.mlp.c_proj",
221
+ "transformer.visual.transformer.resblocks.18.attn.in_proj",
222
+ "transformer.visual.transformer.resblocks.38.mlp.c_proj",
223
+ "transformer.h.12.mlp.w1",
224
+ "transformer.h.1.attn.c_attn",
225
+ "transformer.visual.transformer.resblocks.31.mlp.c_proj",
226
+ "transformer.visual.transformer.resblocks.44.mlp.c_proj",
227
+ "transformer.h.15.mlp.c_proj",
228
+ "transformer.h.6.mlp.w1",
229
+ "transformer.visual.transformer.resblocks.16.mlp.c_proj",
230
+ "transformer.h.13.attn.c_proj",
231
+ "transformer.h.15.attn.c_attn",
232
+ "transformer.h.15.mlp.w1",
233
+ "transformer.h.17.mlp.w2",
234
+ "transformer.visual.transformer.resblocks.10.attn.in_proj",
235
+ "transformer.h.26.attn.c_proj",
236
+ "transformer.visual.transformer.resblocks.20.attn.in_proj",
237
+ "transformer.h.10.mlp.w2",
238
+ "transformer.h.24.attn.c_attn",
239
+ "transformer.h.8.mlp.w1",
240
+ "transformer.h.23.mlp.w1",
241
+ "transformer.visual.transformer.resblocks.1.mlp.c_proj",
242
+ "transformer.h.4.mlp.w2",
243
+ "transformer.visual.transformer.resblocks.38.attn.in_proj",
244
+ "transformer.h.12.mlp.w2",
245
+ "transformer.h.7.attn.c_proj",
246
+ "transformer.h.4.mlp.c_proj",
247
+ "transformer.visual.transformer.resblocks.31.attn.out_proj",
248
+ "transformer.visual.transformer.resblocks.17.mlp.c_proj",
249
+ "transformer.h.21.mlp.w2",
250
+ "transformer.visual.transformer.resblocks.5.attn.in_proj",
251
+ "transformer.h.18.attn.c_proj",
252
+ "transformer.visual.transformer.resblocks.31.mlp.c_fc",
253
+ "transformer.h.18.mlp.w2",
254
+ "transformer.visual.transformer.resblocks.6.attn.out_proj",
255
+ "transformer.visual.transformer.resblocks.8.attn.in_proj",
256
+ "transformer.visual.transformer.resblocks.30.mlp.c_proj",
257
+ "transformer.h.30.mlp.c_proj",
258
+ "transformer.visual.transformer.resblocks.30.attn.out_proj",
259
+ "transformer.visual.transformer.resblocks.16.attn.out_proj",
260
+ "transformer.visual.transformer.resblocks.14.attn.out_proj",
261
+ "transformer.h.25.mlp.w1",
262
+ "transformer.visual.transformer.resblocks.45.attn.in_proj",
263
+ "transformer.h.11.attn.c_proj",
264
+ "transformer.visual.transformer.resblocks.30.attn.in_proj",
265
+ "transformer.visual.transformer.resblocks.43.mlp.c_proj",
266
+ "transformer.h.10.mlp.c_proj",
267
+ "transformer.h.21.mlp.c_proj",
268
+ "transformer.visual.transformer.resblocks.43.attn.in_proj",
269
+ "transformer.visual.transformer.resblocks.3.mlp.c_fc",
270
+ "transformer.visual.transformer.resblocks.44.attn.out_proj",
271
+ "transformer.h.23.attn.c_attn",
272
+ "transformer.visual.transformer.resblocks.22.attn.in_proj",
273
+ "transformer.visual.transformer.resblocks.6.attn.in_proj",
274
+ "transformer.visual.transformer.resblocks.44.mlp.c_fc",
275
+ "transformer.h.17.attn.c_attn",
276
+ "transformer.h.7.attn.c_attn",
277
+ "transformer.visual.transformer.resblocks.42.attn.in_proj",
278
+ "transformer.visual.transformer.resblocks.20.mlp.c_proj",
279
+ "transformer.h.8.mlp.c_proj",
280
+ "transformer.visual.transformer.resblocks.17.attn.out_proj",
281
+ "transformer.h.14.attn.c_proj",
282
+ "transformer.visual.transformer.resblocks.40.attn.in_proj",
283
+ "transformer.h.25.attn.c_proj",
284
+ "transformer.h.28.mlp.c_proj",
285
+ "transformer.visual.transformer.resblocks.35.mlp.c_proj",
286
+ "transformer.visual.transformer.resblocks.36.attn.in_proj",
287
+ "transformer.visual.transformer.resblocks.41.mlp.c_fc",
288
+ "transformer.visual.transformer.resblocks.14.mlp.c_fc",
289
+ "transformer.h.30.mlp.w2",
290
+ "transformer.h.20.mlp.w1",
291
+ "transformer.visual.transformer.resblocks.33.mlp.c_fc",
292
+ "transformer.h.29.mlp.w2",
293
+ "transformer.visual.transformer.resblocks.47.mlp.c_proj",
294
+ "transformer.visual.transformer.resblocks.30.mlp.c_fc",
295
+ "transformer.h.10.attn.c_attn",
296
+ "transformer.visual.transformer.resblocks.1.attn.in_proj",
297
+ "transformer.h.1.attn.c_proj",
298
+ "transformer.visual.transformer.resblocks.8.mlp.c_proj",
299
+ "transformer.h.19.attn.c_proj",
300
+ "transformer.visual.transformer.resblocks.37.attn.in_proj",
301
+ "transformer.h.15.attn.c_proj",
302
+ "transformer.h.5.attn.c_proj",
303
+ "transformer.visual.transformer.resblocks.32.mlp.c_proj",
304
+ "transformer.visual.transformer.resblocks.3.attn.out_proj",
305
+ "transformer.visual.transformer.resblocks.32.attn.in_proj",
306
+ "transformer.h.21.mlp.w1",
307
+ "transformer.h.23.mlp.c_proj",
308
+ "transformer.h.30.mlp.w1",
309
+ "transformer.h.0.attn.c_attn",
310
+ "transformer.visual.transformer.resblocks.24.attn.out_proj",
311
+ "transformer.visual.transformer.resblocks.31.attn.in_proj",
312
+ "transformer.h.18.mlp.c_proj",
313
+ "transformer.visual.transformer.resblocks.25.mlp.c_fc",
314
+ "transformer.visual.transformer.resblocks.22.mlp.c_fc",
315
+ "transformer.h.30.attn.c_attn",
316
+ "transformer.visual.transformer.resblocks.13.mlp.c_fc",
317
+ "transformer.h.17.mlp.c_proj",
318
+ "transformer.visual.transformer.resblocks.24.attn.in_proj",
319
+ "transformer.h.11.attn.c_attn",
320
+ "transformer.h.2.mlp.w2",
321
+ "transformer.visual.transformer.resblocks.8.mlp.c_fc",
322
+ "transformer.visual.transformer.resblocks.0.mlp.c_fc",
323
+ "transformer.visual.transformer.resblocks.2.attn.out_proj",
324
+ "transformer.visual.transformer.resblocks.35.mlp.c_fc",
325
+ "transformer.visual.transformer.resblocks.39.attn.out_proj",
326
+ "transformer.h.12.attn.c_proj",
327
+ "transformer.visual.transformer.resblocks.28.attn.in_proj",
328
+ "transformer.visual.transformer.resblocks.29.mlp.c_fc",
329
+ "transformer.visual.transformer.resblocks.0.attn.out_proj",
330
+ "transformer.visual.transformer.resblocks.23.mlp.c_proj",
331
+ "transformer.h.20.attn.c_attn",
332
+ "transformer.visual.transformer.resblocks.7.attn.out_proj",
333
+ "transformer.visual.transformer.resblocks.15.attn.out_proj",
334
+ "transformer.h.7.mlp.c_proj",
335
+ "transformer.visual.transformer.resblocks.1.attn.out_proj",
336
+ "transformer.h.3.mlp.w2",
337
+ "transformer.h.9.mlp.w2",
338
+ "transformer.visual.transformer.resblocks.34.attn.in_proj",
339
+ "transformer.h.27.attn.c_attn",
340
+ "transformer.visual.transformer.resblocks.12.mlp.c_fc",
341
+ "transformer.h.6.mlp.w2",
342
+ "transformer.visual.transformer.resblocks.39.attn.in_proj",
343
+ "transformer.h.15.mlp.w2",
344
+ "transformer.visual.transformer.resblocks.18.mlp.c_proj",
345
+ "transformer.h.0.attn.c_proj",
346
+ "transformer.h.19.attn.c_attn",
347
+ "transformer.visual.transformer.resblocks.27.mlp.c_proj",
348
+ "transformer.visual.transformer.resblocks.23.attn.out_proj",
349
+ "transformer.h.14.mlp.c_proj",
350
+ "transformer.h.9.mlp.c_proj",
351
+ "transformer.visual.transformer.resblocks.12.attn.out_proj",
352
+ "transformer.visual.transformer.resblocks.0.mlp.c_proj",
353
+ "transformer.visual.transformer.resblocks.5.mlp.c_fc",
354
+ "transformer.visual.transformer.resblocks.28.mlp.c_fc",
355
+ "transformer.visual.transformer.resblocks.6.mlp.c_proj",
356
+ "transformer.visual.transformer.resblocks.22.mlp.c_proj",
357
+ "transformer.visual.transformer.resblocks.37.mlp.c_proj",
358
+ "transformer.visual.transformer.resblocks.17.attn.in_proj",
359
+ "transformer.visual.transformer.resblocks.46.attn.out_proj",
360
+ "transformer.h.24.mlp.w2",
361
+ "transformer.h.27.mlp.w1",
362
+ "transformer.visual.transformer.resblocks.11.attn.in_proj",
363
+ "transformer.visual.transformer.resblocks.4.mlp.c_proj",
364
+ "transformer.visual.transformer.resblocks.21.mlp.c_proj",
365
+ "transformer.visual.transformer.resblocks.26.mlp.c_proj",
366
+ "transformer.visual.transformer.resblocks.15.mlp.c_fc",
367
+ "transformer.h.2.mlp.c_proj",
368
+ "transformer.h.1.mlp.c_proj",
369
+ "transformer.h.5.mlp.c_proj",
370
+ "transformer.visual.transformer.resblocks.45.mlp.c_fc",
371
+ "transformer.visual.transformer.resblocks.0.attn.in_proj",
372
+ "transformer.h.25.mlp.w2",
373
+ "transformer.h.20.attn.c_proj",
374
+ "transformer.h.17.attn.c_proj",
375
+ "transformer.visual.transformer.resblocks.1.mlp.c_fc"
376
+ ],
377
+ "task_type": "CAUSAL_LM",
378
+ "use_dora": false,
379
+ "use_rslora": false
380
+ }
checkpoint-5200/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b5ef3d5719113913692eeaa39ff4098b0ceeca314ccc84b6f04866cf6f4bf84
3
+ size 469105640
checkpoint-5200/global_step5200/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a36c8f8e91a6bfe4799f43c7f8064ecbbe95908178c32e3e1ed88f350f75baf
3
+ size 351761648
checkpoint-5200/global_step5200/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b9338755c4a34fb5d9ed728f74c4be62bcecfdaa267dc244f91db4b18617370e
3
+ size 351761776
checkpoint-5200/global_step5200/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d00898834b2f07b5e883b85c7ded4172d494edc03bcacb73ab507e5119b0f2f4
3
+ size 351761776
checkpoint-5200/global_step5200/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:88a3e9f1e769c038f236cc51b66e0399264b05edda3ef0c50173a69c58ba65aa
3
+ size 351761584
checkpoint-5200/global_step5200/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57846740e6e233c0a7c6df1c9af368d8bf525ff0b963a4a02233e904356bcdd2
3
+ size 351763184
checkpoint-5200/global_step5200/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e6012072237cdcbcff539dcb5b9972fda4ba155b9e6c80dc9dea7b77f77c271
3
+ size 351771440
checkpoint-5200/global_step5200/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d689c96bd309c72b6541317f37bb6905bacdec457610954646818ca2c5deb4ea
3
+ size 351771632
checkpoint-5200/global_step5200/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:415bb6e9d58bca21160e721e81f707a09332b4f19646c9e950ee45eb6e609f69
3
+ size 351771312
checkpoint-5200/global_step5200/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23c87fee1cad5b7e0e00e3e810b397f362a830c3b3fe62d1529e97e856b7eddd
3
+ size 469584556
checkpoint-5200/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step5200
checkpoint-5200/qwen.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-5200/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e934de68459f0fc23e96e0ac510efe6f61c68d638e71ef316f857ba59de66289
3
+ size 15920
checkpoint-5200/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9db7709767592d9eeaed9c579550e0424175e4d8a3f205ec83524eb2c69b5c60
3
+ size 15920
checkpoint-5200/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5c7b815b768d669cc970352d0c2bf61c905dcc23ae46efb0d3797444c368124
3
+ size 15920
checkpoint-5200/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b95ffedd1d351c277ed06becb1d243c8b61e6ddc55eab23d02bb5ac65fb136f6
3
+ size 15920
checkpoint-5200/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ebe43a0375e33568487bb2a1effa1d2ece7954bdaa4da4cfa6bf7bf7643d5e8
3
+ size 15920
checkpoint-5200/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:815cc6c68d60fda371c499224bbaf36c22763c1fefa24ebb2e006c41f09e9266
3
+ size 15920
checkpoint-5200/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce78992c6a2a427ab1b8f086ecfb531b3e90a0578817c096b9fdcc696cdec2d1
3
+ size 15920
checkpoint-5200/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:854cf6b32562e4235b76c377b821d14174ff9d710e00399c2ca8a60a5aede63f
3
+ size 15920
checkpoint-5200/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbace2fb3eb63840abd6b9d3fe5a52009d4d02f90fb4dc45f21ea2c505f2d544
3
+ size 1064
checkpoint-5200/special_tokens_map.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "pad_token": "<|endoftext|>"
3
+ }
checkpoint-5200/tokenizer_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {},
3
+ "auto_map": {
4
+ "AutoTokenizer": [
5
+ "Qwen/Qwen-VL-Chat--tokenization_qwen.QWenTokenizer",
6
+ null
7
+ ]
8
+ },
9
+ "clean_up_tokenization_spaces": true,
10
+ "model_max_length": 768,
11
+ "pad_token": "<|endoftext|>",
12
+ "padding_side": "right",
13
+ "tokenizer_class": "QWenTokenizer"
14
+ }
checkpoint-5200/trainer_state.json ADDED
@@ -0,0 +1,3673 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.3393591333289826,
5
+ "eval_steps": 500,
6
+ "global_step": 5200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0006526137179403511,
13
+ "grad_norm": 17.690582114691438,
14
+ "learning_rate": 1.948051948051948e-06,
15
+ "loss": 1.3559,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.0013052274358807021,
20
+ "grad_norm": 7.768088366444893,
21
+ "learning_rate": 3.896103896103896e-06,
22
+ "loss": 1.2706,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.001957841153821053,
27
+ "grad_norm": 7.705313536090087,
28
+ "learning_rate": 5.844155844155845e-06,
29
+ "loss": 1.3781,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.0026104548717614043,
34
+ "grad_norm": 34.39078827766783,
35
+ "learning_rate": 7.792207792207792e-06,
36
+ "loss": 1.2749,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.0032630685897017554,
41
+ "grad_norm": 68.28824334896528,
42
+ "learning_rate": 9.74025974025974e-06,
43
+ "loss": 1.2955,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.003915682307642106,
48
+ "grad_norm": 14.220322607917241,
49
+ "learning_rate": 1.168831168831169e-05,
50
+ "loss": 1.2315,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.0045682960255824575,
55
+ "grad_norm": 12.611848231734811,
56
+ "learning_rate": 1.3636363636363637e-05,
57
+ "loss": 1.0953,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.0052209097435228086,
62
+ "grad_norm": 6.055664298727015,
63
+ "learning_rate": 1.5584415584415583e-05,
64
+ "loss": 1.105,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.00587352346146316,
69
+ "grad_norm": 3.52269227801977,
70
+ "learning_rate": 1.753246753246753e-05,
71
+ "loss": 0.9563,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.006526137179403511,
76
+ "grad_norm": 10.771884023354394,
77
+ "learning_rate": 1.948051948051948e-05,
78
+ "loss": 0.9523,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.007178750897343862,
83
+ "grad_norm": 33.41476483216757,
84
+ "learning_rate": 2.1428571428571428e-05,
85
+ "loss": 0.832,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.007831364615284213,
90
+ "grad_norm": 31.120240364617406,
91
+ "learning_rate": 2.337662337662338e-05,
92
+ "loss": 0.8376,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.008483978333224564,
97
+ "grad_norm": 5.517231564060886,
98
+ "learning_rate": 2.5324675324675325e-05,
99
+ "loss": 0.8293,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.009136592051164915,
104
+ "grad_norm": 4.311605388342058,
105
+ "learning_rate": 2.7272727272727273e-05,
106
+ "loss": 0.8295,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.009789205769105266,
111
+ "grad_norm": 6.997724163121519,
112
+ "learning_rate": 2.922077922077922e-05,
113
+ "loss": 0.7662,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.010441819487045617,
118
+ "grad_norm": 6.517836234400708,
119
+ "learning_rate": 2.999998841890695e-05,
120
+ "loss": 0.8158,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.011094433204985968,
125
+ "grad_norm": 4.186989141019666,
126
+ "learning_rate": 2.99999176456253e-05,
127
+ "loss": 0.8037,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.01174704692292632,
132
+ "grad_norm": 5.181546943355458,
133
+ "learning_rate": 2.9999782533305785e-05,
134
+ "loss": 0.7274,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.01239966064086667,
139
+ "grad_norm": 3.767076521211455,
140
+ "learning_rate": 2.9999583082527935e-05,
141
+ "loss": 0.7474,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.013052274358807021,
146
+ "grad_norm": 18.84416377940188,
147
+ "learning_rate": 2.999931929414726e-05,
148
+ "loss": 0.7708,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.013704888076747372,
153
+ "grad_norm": 3.169160630444992,
154
+ "learning_rate": 2.999899116929522e-05,
155
+ "loss": 0.8279,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.014357501794687724,
160
+ "grad_norm": 1.912782077307437,
161
+ "learning_rate": 2.999859870937924e-05,
162
+ "loss": 0.7407,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.015010115512628075,
167
+ "grad_norm": 3.3906505952914974,
168
+ "learning_rate": 2.9998141916082696e-05,
169
+ "loss": 0.7732,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.015662729230568426,
174
+ "grad_norm": 2.7144492322383584,
175
+ "learning_rate": 2.999762079136491e-05,
176
+ "loss": 0.7272,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.01631534294850878,
181
+ "grad_norm": 7.109330196029837,
182
+ "learning_rate": 2.9997035337461135e-05,
183
+ "loss": 0.7748,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.016967956666449128,
188
+ "grad_norm": 1.6054280593801813,
189
+ "learning_rate": 2.9996385556882555e-05,
190
+ "loss": 0.7676,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.01762057038438948,
195
+ "grad_norm": 10.883212441614672,
196
+ "learning_rate": 2.9995671452416274e-05,
197
+ "loss": 0.735,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.01827318410232983,
202
+ "grad_norm": 3.511064886507805,
203
+ "learning_rate": 2.999489302712529e-05,
204
+ "loss": 0.7741,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.018925797820270183,
209
+ "grad_norm": 3.618603818375307,
210
+ "learning_rate": 2.9994050284348497e-05,
211
+ "loss": 0.749,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.019578411538210532,
216
+ "grad_norm": 6.012944880342178,
217
+ "learning_rate": 2.9993143227700668e-05,
218
+ "loss": 0.7411,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.020231025256150885,
223
+ "grad_norm": 2.348670372295822,
224
+ "learning_rate": 2.9992171861072428e-05,
225
+ "loss": 0.7394,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.020883638974091234,
230
+ "grad_norm": 4.728309497649916,
231
+ "learning_rate": 2.9991136188630263e-05,
232
+ "loss": 0.8077,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.021536252692031587,
237
+ "grad_norm": 15.611917863290122,
238
+ "learning_rate": 2.9990036214816467e-05,
239
+ "loss": 0.7209,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.022188866409971936,
244
+ "grad_norm": 3.7315277354070817,
245
+ "learning_rate": 2.998887194434916e-05,
246
+ "loss": 0.7101,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.02284148012791229,
251
+ "grad_norm": 6.618759094750745,
252
+ "learning_rate": 2.998764338222222e-05,
253
+ "loss": 0.7759,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.02349409384585264,
258
+ "grad_norm": 6.770044306239603,
259
+ "learning_rate": 2.998635053370533e-05,
260
+ "loss": 0.7398,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.02414670756379299,
265
+ "grad_norm": 12.471224202357552,
266
+ "learning_rate": 2.998499340434389e-05,
267
+ "loss": 0.7046,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.02479932128173334,
272
+ "grad_norm": 4.147359416986547,
273
+ "learning_rate": 2.9983571999959013e-05,
274
+ "loss": 0.761,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.025451934999673693,
279
+ "grad_norm": 34.84722866603778,
280
+ "learning_rate": 2.9982086326647533e-05,
281
+ "loss": 0.757,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.026104548717614043,
286
+ "grad_norm": 5.245498180313093,
287
+ "learning_rate": 2.998053639078193e-05,
288
+ "loss": 0.7536,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.026757162435554396,
293
+ "grad_norm": 36.55990241841121,
294
+ "learning_rate": 2.997892219901034e-05,
295
+ "loss": 0.7395,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.027409776153494745,
300
+ "grad_norm": 5.03198653806696,
301
+ "learning_rate": 2.9977243758256494e-05,
302
+ "loss": 0.7208,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.028062389871435098,
307
+ "grad_norm": 11.376914733036081,
308
+ "learning_rate": 2.997550107571972e-05,
309
+ "loss": 0.719,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.028715003589375447,
314
+ "grad_norm": 2.958119684662306,
315
+ "learning_rate": 2.9973694158874898e-05,
316
+ "loss": 0.7271,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.0293676173073158,
321
+ "grad_norm": 6.037096737490817,
322
+ "learning_rate": 2.9971823015472418e-05,
323
+ "loss": 0.7356,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.03002023102525615,
328
+ "grad_norm": 5.3042973640363575,
329
+ "learning_rate": 2.9969887653538164e-05,
330
+ "loss": 0.7207,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.030672844743196502,
335
+ "grad_norm": 2.4985603001745624,
336
+ "learning_rate": 2.996788808137347e-05,
337
+ "loss": 0.7769,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.03132545846113685,
342
+ "grad_norm": 7.607065841315647,
343
+ "learning_rate": 2.9965824307555084e-05,
344
+ "loss": 0.7091,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.03197807217907721,
349
+ "grad_norm": 4.322533035107957,
350
+ "learning_rate": 2.9963696340935144e-05,
351
+ "loss": 0.7114,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.03263068589701756,
356
+ "grad_norm": 5.878565903250334,
357
+ "learning_rate": 2.9961504190641108e-05,
358
+ "loss": 0.7284,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.033283299614957906,
363
+ "grad_norm": 5.0026507027119855,
364
+ "learning_rate": 2.9959247866075764e-05,
365
+ "loss": 0.6992,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.033935913332898256,
370
+ "grad_norm": 7.12632150273901,
371
+ "learning_rate": 2.9956927376917137e-05,
372
+ "loss": 0.7285,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.03458852705083861,
377
+ "grad_norm": 5.211123255860348,
378
+ "learning_rate": 2.9954542733118496e-05,
379
+ "loss": 0.7511,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.03524114076877896,
384
+ "grad_norm": 9.925273547498618,
385
+ "learning_rate": 2.995209394490827e-05,
386
+ "loss": 0.7699,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.03589375448671931,
391
+ "grad_norm": 7.418381681996765,
392
+ "learning_rate": 2.9949581022790025e-05,
393
+ "loss": 0.759,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.03654636820465966,
398
+ "grad_norm": 4.352380973507467,
399
+ "learning_rate": 2.9947003977542423e-05,
400
+ "loss": 0.7537,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.037198981922600016,
405
+ "grad_norm": 9.712842120769198,
406
+ "learning_rate": 2.9944362820219167e-05,
407
+ "loss": 0.7063,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.037851595640540366,
412
+ "grad_norm": 5.757600819230482,
413
+ "learning_rate": 2.994165756214895e-05,
414
+ "loss": 0.7893,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.038504209358480715,
419
+ "grad_norm": 5.529209601152462,
420
+ "learning_rate": 2.9938888214935426e-05,
421
+ "loss": 0.6771,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.039156823076421064,
426
+ "grad_norm": 10.550479346499758,
427
+ "learning_rate": 2.9936054790457127e-05,
428
+ "loss": 0.737,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.03980943679436142,
433
+ "grad_norm": 8.284279553451016,
434
+ "learning_rate": 2.9933157300867437e-05,
435
+ "loss": 0.7182,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.04046205051230177,
440
+ "grad_norm": 8.18511648646326,
441
+ "learning_rate": 2.9930195758594542e-05,
442
+ "loss": 0.6901,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.04111466423024212,
447
+ "grad_norm": 14.569754827631956,
448
+ "learning_rate": 2.9927170176341365e-05,
449
+ "loss": 0.7008,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.04176727794818247,
454
+ "grad_norm": 4.214581273685441,
455
+ "learning_rate": 2.992408056708551e-05,
456
+ "loss": 0.7489,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.042419891666122825,
461
+ "grad_norm": 10.038596627079452,
462
+ "learning_rate": 2.9920926944079224e-05,
463
+ "loss": 0.7649,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.043072505384063174,
468
+ "grad_norm": 2.386544029221306,
469
+ "learning_rate": 2.9917709320849305e-05,
470
+ "loss": 0.7223,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.043725119102003523,
475
+ "grad_norm": 8.286359254511249,
476
+ "learning_rate": 2.9914427711197096e-05,
477
+ "loss": 0.7089,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.04437773281994387,
482
+ "grad_norm": 4.235819327444911,
483
+ "learning_rate": 2.9911082129198372e-05,
484
+ "loss": 0.7138,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.04503034653788423,
489
+ "grad_norm": 5.187338033698449,
490
+ "learning_rate": 2.9907672589203316e-05,
491
+ "loss": 0.7192,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.04568296025582458,
496
+ "grad_norm": 6.360475337181379,
497
+ "learning_rate": 2.9904199105836443e-05,
498
+ "loss": 0.7094,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.04633557397376493,
503
+ "grad_norm": 4.906400836156689,
504
+ "learning_rate": 2.990066169399654e-05,
505
+ "loss": 0.654,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.04698818769170528,
510
+ "grad_norm": 17.600495314130633,
511
+ "learning_rate": 2.9897060368856603e-05,
512
+ "loss": 0.7299,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.04764080140964563,
517
+ "grad_norm": 7.765935941492389,
518
+ "learning_rate": 2.989339514586377e-05,
519
+ "loss": 0.7486,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.04829341512758598,
524
+ "grad_norm": 7.30026395137639,
525
+ "learning_rate": 2.9889666040739252e-05,
526
+ "loss": 0.6941,
527
+ "step": 740
528
+ },
529
+ {
530
+ "epoch": 0.04894602884552633,
531
+ "grad_norm": 4.676985481218465,
532
+ "learning_rate": 2.9885873069478275e-05,
533
+ "loss": 0.7701,
534
+ "step": 750
535
+ },
536
+ {
537
+ "epoch": 0.04959864256346668,
538
+ "grad_norm": 42.50656974727186,
539
+ "learning_rate": 2.9882016248350006e-05,
540
+ "loss": 0.7428,
541
+ "step": 760
542
+ },
543
+ {
544
+ "epoch": 0.05025125628140704,
545
+ "grad_norm": 3.9893667031114766,
546
+ "learning_rate": 2.9878095593897474e-05,
547
+ "loss": 0.7204,
548
+ "step": 770
549
+ },
550
+ {
551
+ "epoch": 0.05090386999934739,
552
+ "grad_norm": 8.909028486553332,
553
+ "learning_rate": 2.9874111122937518e-05,
554
+ "loss": 0.7336,
555
+ "step": 780
556
+ },
557
+ {
558
+ "epoch": 0.051556483717287736,
559
+ "grad_norm": 5.256925284136456,
560
+ "learning_rate": 2.9870062852560698e-05,
561
+ "loss": 0.7674,
562
+ "step": 790
563
+ },
564
+ {
565
+ "epoch": 0.052209097435228086,
566
+ "grad_norm": 5.835535487534073,
567
+ "learning_rate": 2.986595080013123e-05,
568
+ "loss": 0.7547,
569
+ "step": 800
570
+ },
571
+ {
572
+ "epoch": 0.05286171115316844,
573
+ "grad_norm": 4.7337998648314565,
574
+ "learning_rate": 2.9861774983286913e-05,
575
+ "loss": 0.7412,
576
+ "step": 810
577
+ },
578
+ {
579
+ "epoch": 0.05351432487110879,
580
+ "grad_norm": 4.020304406250962,
581
+ "learning_rate": 2.9857535419939053e-05,
582
+ "loss": 0.7351,
583
+ "step": 820
584
+ },
585
+ {
586
+ "epoch": 0.05416693858904914,
587
+ "grad_norm": 7.005748568175158,
588
+ "learning_rate": 2.9853232128272367e-05,
589
+ "loss": 0.7146,
590
+ "step": 830
591
+ },
592
+ {
593
+ "epoch": 0.05481955230698949,
594
+ "grad_norm": 12.598315147497464,
595
+ "learning_rate": 2.984886512674494e-05,
596
+ "loss": 0.7066,
597
+ "step": 840
598
+ },
599
+ {
600
+ "epoch": 0.055472166024929846,
601
+ "grad_norm": 5.636755294839953,
602
+ "learning_rate": 2.9844434434088114e-05,
603
+ "loss": 0.8033,
604
+ "step": 850
605
+ },
606
+ {
607
+ "epoch": 0.056124779742870196,
608
+ "grad_norm": 2.5964949457129305,
609
+ "learning_rate": 2.9839940069306436e-05,
610
+ "loss": 0.718,
611
+ "step": 860
612
+ },
613
+ {
614
+ "epoch": 0.056777393460810545,
615
+ "grad_norm": 5.496060434333994,
616
+ "learning_rate": 2.9835382051677548e-05,
617
+ "loss": 0.7382,
618
+ "step": 870
619
+ },
620
+ {
621
+ "epoch": 0.057430007178750894,
622
+ "grad_norm": 3.367511777906771,
623
+ "learning_rate": 2.9830760400752117e-05,
624
+ "loss": 0.7049,
625
+ "step": 880
626
+ },
627
+ {
628
+ "epoch": 0.05808262089669125,
629
+ "grad_norm": 12.228282751386294,
630
+ "learning_rate": 2.9826075136353762e-05,
631
+ "loss": 0.7135,
632
+ "step": 890
633
+ },
634
+ {
635
+ "epoch": 0.0587352346146316,
636
+ "grad_norm": 7.426066867205744,
637
+ "learning_rate": 2.9821326278578955e-05,
638
+ "loss": 0.6966,
639
+ "step": 900
640
+ },
641
+ {
642
+ "epoch": 0.05938784833257195,
643
+ "grad_norm": 5.720080945169142,
644
+ "learning_rate": 2.981651384779693e-05,
645
+ "loss": 0.7325,
646
+ "step": 910
647
+ },
648
+ {
649
+ "epoch": 0.0600404620505123,
650
+ "grad_norm": 3.3362738196336275,
651
+ "learning_rate": 2.9811637864649622e-05,
652
+ "loss": 0.7013,
653
+ "step": 920
654
+ },
655
+ {
656
+ "epoch": 0.060693075768452655,
657
+ "grad_norm": 5.5481143050516675,
658
+ "learning_rate": 2.980669835005154e-05,
659
+ "loss": 0.7107,
660
+ "step": 930
661
+ },
662
+ {
663
+ "epoch": 0.061345689486393004,
664
+ "grad_norm": 2.7247889305754533,
665
+ "learning_rate": 2.980169532518971e-05,
666
+ "loss": 0.6839,
667
+ "step": 940
668
+ },
669
+ {
670
+ "epoch": 0.06199830320433335,
671
+ "grad_norm": 12.705144630158374,
672
+ "learning_rate": 2.9796628811523576e-05,
673
+ "loss": 0.7061,
674
+ "step": 950
675
+ },
676
+ {
677
+ "epoch": 0.0626509169222737,
678
+ "grad_norm": 3.1174966376805777,
679
+ "learning_rate": 2.9791498830784896e-05,
680
+ "loss": 0.706,
681
+ "step": 960
682
+ },
683
+ {
684
+ "epoch": 0.06330353064021406,
685
+ "grad_norm": 6.454819870022971,
686
+ "learning_rate": 2.9786305404977657e-05,
687
+ "loss": 0.6901,
688
+ "step": 970
689
+ },
690
+ {
691
+ "epoch": 0.06395614435815442,
692
+ "grad_norm": 8.62099817289566,
693
+ "learning_rate": 2.9781048556377982e-05,
694
+ "loss": 0.6737,
695
+ "step": 980
696
+ },
697
+ {
698
+ "epoch": 0.06460875807609476,
699
+ "grad_norm": 12.649532843245389,
700
+ "learning_rate": 2.977572830753404e-05,
701
+ "loss": 0.6777,
702
+ "step": 990
703
+ },
704
+ {
705
+ "epoch": 0.06526137179403511,
706
+ "grad_norm": 5.019508830810828,
707
+ "learning_rate": 2.9770344681265925e-05,
708
+ "loss": 0.7125,
709
+ "step": 1000
710
+ },
711
+ {
712
+ "epoch": 0.06591398551197546,
713
+ "grad_norm": 5.417114630539967,
714
+ "learning_rate": 2.9764897700665595e-05,
715
+ "loss": 0.7558,
716
+ "step": 1010
717
+ },
718
+ {
719
+ "epoch": 0.06656659922991581,
720
+ "grad_norm": 13.487574757960102,
721
+ "learning_rate": 2.975938738909674e-05,
722
+ "loss": 0.7305,
723
+ "step": 1020
724
+ },
725
+ {
726
+ "epoch": 0.06721921294785617,
727
+ "grad_norm": 4.115297871929447,
728
+ "learning_rate": 2.97538137701947e-05,
729
+ "loss": 0.7382,
730
+ "step": 1030
731
+ },
732
+ {
733
+ "epoch": 0.06787182666579651,
734
+ "grad_norm": 4.218133725965425,
735
+ "learning_rate": 2.974817686786636e-05,
736
+ "loss": 0.7131,
737
+ "step": 1040
738
+ },
739
+ {
740
+ "epoch": 0.06852444038373687,
741
+ "grad_norm": 23.754945260227526,
742
+ "learning_rate": 2.9742476706290044e-05,
743
+ "loss": 0.6854,
744
+ "step": 1050
745
+ },
746
+ {
747
+ "epoch": 0.06917705410167722,
748
+ "grad_norm": 9.992382581534882,
749
+ "learning_rate": 2.973671330991541e-05,
750
+ "loss": 0.7224,
751
+ "step": 1060
752
+ },
753
+ {
754
+ "epoch": 0.06982966781961757,
755
+ "grad_norm": 9.022842665053004,
756
+ "learning_rate": 2.973088670346336e-05,
757
+ "loss": 0.69,
758
+ "step": 1070
759
+ },
760
+ {
761
+ "epoch": 0.07048228153755792,
762
+ "grad_norm": 7.180693480173149,
763
+ "learning_rate": 2.97249969119259e-05,
764
+ "loss": 0.6752,
765
+ "step": 1080
766
+ },
767
+ {
768
+ "epoch": 0.07113489525549826,
769
+ "grad_norm": 4.631581340679664,
770
+ "learning_rate": 2.9719043960566088e-05,
771
+ "loss": 0.7078,
772
+ "step": 1090
773
+ },
774
+ {
775
+ "epoch": 0.07178750897343862,
776
+ "grad_norm": 3.8365551360021497,
777
+ "learning_rate": 2.9713027874917867e-05,
778
+ "loss": 0.7455,
779
+ "step": 1100
780
+ },
781
+ {
782
+ "epoch": 0.07244012269137898,
783
+ "grad_norm": 20.612721990589407,
784
+ "learning_rate": 2.9706948680785984e-05,
785
+ "loss": 0.7123,
786
+ "step": 1110
787
+ },
788
+ {
789
+ "epoch": 0.07309273640931932,
790
+ "grad_norm": 8.515913036269723,
791
+ "learning_rate": 2.9700806404245893e-05,
792
+ "loss": 0.6755,
793
+ "step": 1120
794
+ },
795
+ {
796
+ "epoch": 0.07374535012725968,
797
+ "grad_norm": 8.702591994450561,
798
+ "learning_rate": 2.9694601071643607e-05,
799
+ "loss": 0.743,
800
+ "step": 1130
801
+ },
802
+ {
803
+ "epoch": 0.07439796384520003,
804
+ "grad_norm": 20.204623397644042,
805
+ "learning_rate": 2.968833270959562e-05,
806
+ "loss": 0.6995,
807
+ "step": 1140
808
+ },
809
+ {
810
+ "epoch": 0.07505057756314037,
811
+ "grad_norm": 3.4150625200259563,
812
+ "learning_rate": 2.9682001344988768e-05,
813
+ "loss": 0.7245,
814
+ "step": 1150
815
+ },
816
+ {
817
+ "epoch": 0.07570319128108073,
818
+ "grad_norm": 4.827412673105033,
819
+ "learning_rate": 2.967560700498013e-05,
820
+ "loss": 0.6764,
821
+ "step": 1160
822
+ },
823
+ {
824
+ "epoch": 0.07635580499902107,
825
+ "grad_norm": 5.9778449783108965,
826
+ "learning_rate": 2.9669149716996897e-05,
827
+ "loss": 0.7094,
828
+ "step": 1170
829
+ },
830
+ {
831
+ "epoch": 0.07700841871696143,
832
+ "grad_norm": 4.626419468156439,
833
+ "learning_rate": 2.9662629508736278e-05,
834
+ "loss": 0.7139,
835
+ "step": 1180
836
+ },
837
+ {
838
+ "epoch": 0.07766103243490179,
839
+ "grad_norm": 8.23953369228554,
840
+ "learning_rate": 2.9656046408165344e-05,
841
+ "loss": 0.7132,
842
+ "step": 1190
843
+ },
844
+ {
845
+ "epoch": 0.07831364615284213,
846
+ "grad_norm": 5.755275462407804,
847
+ "learning_rate": 2.964940044352095e-05,
848
+ "loss": 0.6923,
849
+ "step": 1200
850
+ },
851
+ {
852
+ "epoch": 0.07896625987078248,
853
+ "grad_norm": 3.8396649246253816,
854
+ "learning_rate": 2.9642691643309572e-05,
855
+ "loss": 0.7082,
856
+ "step": 1210
857
+ },
858
+ {
859
+ "epoch": 0.07961887358872284,
860
+ "grad_norm": 5.7429454484886415,
861
+ "learning_rate": 2.963592003630723e-05,
862
+ "loss": 0.7095,
863
+ "step": 1220
864
+ },
865
+ {
866
+ "epoch": 0.08027148730666318,
867
+ "grad_norm": 17.628494673763004,
868
+ "learning_rate": 2.962908565155932e-05,
869
+ "loss": 0.7309,
870
+ "step": 1230
871
+ },
872
+ {
873
+ "epoch": 0.08092410102460354,
874
+ "grad_norm": 4.83400055237192,
875
+ "learning_rate": 2.9622188518380528e-05,
876
+ "loss": 0.6925,
877
+ "step": 1240
878
+ },
879
+ {
880
+ "epoch": 0.08157671474254388,
881
+ "grad_norm": 3.1535973307593905,
882
+ "learning_rate": 2.9615228666354667e-05,
883
+ "loss": 0.7441,
884
+ "step": 1250
885
+ },
886
+ {
887
+ "epoch": 0.08222932846048424,
888
+ "grad_norm": 4.085385929026401,
889
+ "learning_rate": 2.9608206125334586e-05,
890
+ "loss": 0.7137,
891
+ "step": 1260
892
+ },
893
+ {
894
+ "epoch": 0.0828819421784246,
895
+ "grad_norm": 4.299591870123697,
896
+ "learning_rate": 2.9601120925442016e-05,
897
+ "loss": 0.7515,
898
+ "step": 1270
899
+ },
900
+ {
901
+ "epoch": 0.08353455589636494,
902
+ "grad_norm": 12.873434323415678,
903
+ "learning_rate": 2.959397309706746e-05,
904
+ "loss": 0.6852,
905
+ "step": 1280
906
+ },
907
+ {
908
+ "epoch": 0.0841871696143053,
909
+ "grad_norm": 6.427088345402557,
910
+ "learning_rate": 2.958676267087004e-05,
911
+ "loss": 0.6499,
912
+ "step": 1290
913
+ },
914
+ {
915
+ "epoch": 0.08483978333224565,
916
+ "grad_norm": 4.70723263638176,
917
+ "learning_rate": 2.9579489677777387e-05,
918
+ "loss": 0.6803,
919
+ "step": 1300
920
+ },
921
+ {
922
+ "epoch": 0.08549239705018599,
923
+ "grad_norm": 4.819218491318424,
924
+ "learning_rate": 2.9572154148985495e-05,
925
+ "loss": 0.6798,
926
+ "step": 1310
927
+ },
928
+ {
929
+ "epoch": 0.08614501076812635,
930
+ "grad_norm": 3.0652661968089827,
931
+ "learning_rate": 2.9564756115958592e-05,
932
+ "loss": 0.6935,
933
+ "step": 1320
934
+ },
935
+ {
936
+ "epoch": 0.08679762448606669,
937
+ "grad_norm": 5.997224165634556,
938
+ "learning_rate": 2.9557295610429017e-05,
939
+ "loss": 0.7133,
940
+ "step": 1330
941
+ },
942
+ {
943
+ "epoch": 0.08745023820400705,
944
+ "grad_norm": 3.3593003375605717,
945
+ "learning_rate": 2.954977266439706e-05,
946
+ "loss": 0.7335,
947
+ "step": 1340
948
+ },
949
+ {
950
+ "epoch": 0.0881028519219474,
951
+ "grad_norm": 4.161242018302672,
952
+ "learning_rate": 2.954218731013083e-05,
953
+ "loss": 0.7054,
954
+ "step": 1350
955
+ },
956
+ {
957
+ "epoch": 0.08875546563988775,
958
+ "grad_norm": 5.827431481546491,
959
+ "learning_rate": 2.953453958016614e-05,
960
+ "loss": 0.6321,
961
+ "step": 1360
962
+ },
963
+ {
964
+ "epoch": 0.0894080793578281,
965
+ "grad_norm": 7.1039105888444904,
966
+ "learning_rate": 2.952682950730634e-05,
967
+ "loss": 0.6941,
968
+ "step": 1370
969
+ },
970
+ {
971
+ "epoch": 0.09006069307576846,
972
+ "grad_norm": 2.7616336275225892,
973
+ "learning_rate": 2.951905712462219e-05,
974
+ "loss": 0.6928,
975
+ "step": 1380
976
+ },
977
+ {
978
+ "epoch": 0.0907133067937088,
979
+ "grad_norm": 4.261061690296871,
980
+ "learning_rate": 2.9511222465451716e-05,
981
+ "loss": 0.7176,
982
+ "step": 1390
983
+ },
984
+ {
985
+ "epoch": 0.09136592051164916,
986
+ "grad_norm": 5.4134818862551395,
987
+ "learning_rate": 2.950332556340006e-05,
988
+ "loss": 0.7048,
989
+ "step": 1400
990
+ },
991
+ {
992
+ "epoch": 0.0920185342295895,
993
+ "grad_norm": 6.3477656240577085,
994
+ "learning_rate": 2.949536645233935e-05,
995
+ "loss": 0.6842,
996
+ "step": 1410
997
+ },
998
+ {
999
+ "epoch": 0.09267114794752986,
1000
+ "grad_norm": 63.477804314776044,
1001
+ "learning_rate": 2.9487345166408545e-05,
1002
+ "loss": 0.6876,
1003
+ "step": 1420
1004
+ },
1005
+ {
1006
+ "epoch": 0.09332376166547021,
1007
+ "grad_norm": 4.368664541213622,
1008
+ "learning_rate": 2.9479261740013286e-05,
1009
+ "loss": 0.6913,
1010
+ "step": 1430
1011
+ },
1012
+ {
1013
+ "epoch": 0.09397637538341055,
1014
+ "grad_norm": 9.476938465079238,
1015
+ "learning_rate": 2.9471116207825754e-05,
1016
+ "loss": 0.6891,
1017
+ "step": 1440
1018
+ },
1019
+ {
1020
+ "epoch": 0.09462898910135091,
1021
+ "grad_norm": 8.434794578560851,
1022
+ "learning_rate": 2.9462908604784523e-05,
1023
+ "loss": 0.6585,
1024
+ "step": 1450
1025
+ },
1026
+ {
1027
+ "epoch": 0.09528160281929127,
1028
+ "grad_norm": 4.798759761163433,
1029
+ "learning_rate": 2.945463896609441e-05,
1030
+ "loss": 0.6736,
1031
+ "step": 1460
1032
+ },
1033
+ {
1034
+ "epoch": 0.09593421653723161,
1035
+ "grad_norm": 9.782724872581115,
1036
+ "learning_rate": 2.9446307327226306e-05,
1037
+ "loss": 0.6659,
1038
+ "step": 1470
1039
+ },
1040
+ {
1041
+ "epoch": 0.09658683025517197,
1042
+ "grad_norm": 3.997516099278308,
1043
+ "learning_rate": 2.9437913723917058e-05,
1044
+ "loss": 0.6527,
1045
+ "step": 1480
1046
+ },
1047
+ {
1048
+ "epoch": 0.09723944397311232,
1049
+ "grad_norm": 4.623015725563099,
1050
+ "learning_rate": 2.942945819216928e-05,
1051
+ "loss": 0.7274,
1052
+ "step": 1490
1053
+ },
1054
+ {
1055
+ "epoch": 0.09789205769105266,
1056
+ "grad_norm": 3.2197835799755055,
1057
+ "learning_rate": 2.942094076825123e-05,
1058
+ "loss": 0.6966,
1059
+ "step": 1500
1060
+ },
1061
+ {
1062
+ "epoch": 0.09854467140899302,
1063
+ "grad_norm": 3.5107988249516984,
1064
+ "learning_rate": 2.9412361488696628e-05,
1065
+ "loss": 0.7235,
1066
+ "step": 1510
1067
+ },
1068
+ {
1069
+ "epoch": 0.09919728512693336,
1070
+ "grad_norm": 18.7865650951996,
1071
+ "learning_rate": 2.9403720390304518e-05,
1072
+ "loss": 0.7382,
1073
+ "step": 1520
1074
+ },
1075
+ {
1076
+ "epoch": 0.09984989884487372,
1077
+ "grad_norm": 3.85598692653545,
1078
+ "learning_rate": 2.93950175101391e-05,
1079
+ "loss": 0.7475,
1080
+ "step": 1530
1081
+ },
1082
+ {
1083
+ "epoch": 0.10050251256281408,
1084
+ "grad_norm": 20.459657003411998,
1085
+ "learning_rate": 2.938625288552957e-05,
1086
+ "loss": 0.6558,
1087
+ "step": 1540
1088
+ },
1089
+ {
1090
+ "epoch": 0.10115512628075442,
1091
+ "grad_norm": 6.416583997846208,
1092
+ "learning_rate": 2.9377426554069976e-05,
1093
+ "loss": 0.7205,
1094
+ "step": 1550
1095
+ },
1096
+ {
1097
+ "epoch": 0.10180773999869477,
1098
+ "grad_norm": 5.532087704430113,
1099
+ "learning_rate": 2.936853855361904e-05,
1100
+ "loss": 0.7189,
1101
+ "step": 1560
1102
+ },
1103
+ {
1104
+ "epoch": 0.10246035371663513,
1105
+ "grad_norm": 4.756518458886862,
1106
+ "learning_rate": 2.9359588922299986e-05,
1107
+ "loss": 0.7088,
1108
+ "step": 1570
1109
+ },
1110
+ {
1111
+ "epoch": 0.10311296743457547,
1112
+ "grad_norm": 5.775658785412931,
1113
+ "learning_rate": 2.9350577698500408e-05,
1114
+ "loss": 0.682,
1115
+ "step": 1580
1116
+ },
1117
+ {
1118
+ "epoch": 0.10376558115251583,
1119
+ "grad_norm": 7.714313915746094,
1120
+ "learning_rate": 2.9341504920872087e-05,
1121
+ "loss": 0.7393,
1122
+ "step": 1590
1123
+ },
1124
+ {
1125
+ "epoch": 0.10441819487045617,
1126
+ "grad_norm": 11.153510433173501,
1127
+ "learning_rate": 2.933237062833082e-05,
1128
+ "loss": 0.6616,
1129
+ "step": 1600
1130
+ },
1131
+ {
1132
+ "epoch": 0.10507080858839653,
1133
+ "grad_norm": 4.575896778703132,
1134
+ "learning_rate": 2.9323174860056258e-05,
1135
+ "loss": 0.7168,
1136
+ "step": 1610
1137
+ },
1138
+ {
1139
+ "epoch": 0.10572342230633688,
1140
+ "grad_norm": 46.2282201673799,
1141
+ "learning_rate": 2.9313917655491744e-05,
1142
+ "loss": 0.7016,
1143
+ "step": 1620
1144
+ },
1145
+ {
1146
+ "epoch": 0.10637603602427723,
1147
+ "grad_norm": 51.80540559466864,
1148
+ "learning_rate": 2.9304599054344148e-05,
1149
+ "loss": 0.6709,
1150
+ "step": 1630
1151
+ },
1152
+ {
1153
+ "epoch": 0.10702864974221758,
1154
+ "grad_norm": 4.607057564284905,
1155
+ "learning_rate": 2.9295219096583663e-05,
1156
+ "loss": 0.6894,
1157
+ "step": 1640
1158
+ },
1159
+ {
1160
+ "epoch": 0.10768126346015794,
1161
+ "grad_norm": 4.158724628963882,
1162
+ "learning_rate": 2.9285777822443686e-05,
1163
+ "loss": 0.6847,
1164
+ "step": 1650
1165
+ },
1166
+ {
1167
+ "epoch": 0.10833387717809828,
1168
+ "grad_norm": 6.634813921115065,
1169
+ "learning_rate": 2.92762752724206e-05,
1170
+ "loss": 0.7094,
1171
+ "step": 1660
1172
+ },
1173
+ {
1174
+ "epoch": 0.10898649089603864,
1175
+ "grad_norm": 2.437577662086608,
1176
+ "learning_rate": 2.926671148727362e-05,
1177
+ "loss": 0.69,
1178
+ "step": 1670
1179
+ },
1180
+ {
1181
+ "epoch": 0.10963910461397898,
1182
+ "grad_norm": 22.722071681603026,
1183
+ "learning_rate": 2.925708650802463e-05,
1184
+ "loss": 0.704,
1185
+ "step": 1680
1186
+ },
1187
+ {
1188
+ "epoch": 0.11029171833191934,
1189
+ "grad_norm": 2.913996227830109,
1190
+ "learning_rate": 2.9247400375957976e-05,
1191
+ "loss": 0.7211,
1192
+ "step": 1690
1193
+ },
1194
+ {
1195
+ "epoch": 0.11094433204985969,
1196
+ "grad_norm": 5.279852146043678,
1197
+ "learning_rate": 2.923765313262032e-05,
1198
+ "loss": 0.6693,
1199
+ "step": 1700
1200
+ },
1201
+ {
1202
+ "epoch": 0.11159694576780003,
1203
+ "grad_norm": 4.47116557104752,
1204
+ "learning_rate": 2.9227844819820434e-05,
1205
+ "loss": 0.6958,
1206
+ "step": 1710
1207
+ },
1208
+ {
1209
+ "epoch": 0.11224955948574039,
1210
+ "grad_norm": 6.9451125709413,
1211
+ "learning_rate": 2.9217975479629047e-05,
1212
+ "loss": 0.6549,
1213
+ "step": 1720
1214
+ },
1215
+ {
1216
+ "epoch": 0.11290217320368075,
1217
+ "grad_norm": 8.218016152925602,
1218
+ "learning_rate": 2.920804515437865e-05,
1219
+ "loss": 0.7034,
1220
+ "step": 1730
1221
+ },
1222
+ {
1223
+ "epoch": 0.11355478692162109,
1224
+ "grad_norm": 4.725968454405007,
1225
+ "learning_rate": 2.9198053886663314e-05,
1226
+ "loss": 0.7292,
1227
+ "step": 1740
1228
+ },
1229
+ {
1230
+ "epoch": 0.11420740063956145,
1231
+ "grad_norm": 8.078717621365517,
1232
+ "learning_rate": 2.9188001719338514e-05,
1233
+ "loss": 0.6556,
1234
+ "step": 1750
1235
+ },
1236
+ {
1237
+ "epoch": 0.11486001435750179,
1238
+ "grad_norm": 9.045448414751244,
1239
+ "learning_rate": 2.9177888695520933e-05,
1240
+ "loss": 0.7223,
1241
+ "step": 1760
1242
+ },
1243
+ {
1244
+ "epoch": 0.11551262807544214,
1245
+ "grad_norm": 4.318313439658446,
1246
+ "learning_rate": 2.916771485858829e-05,
1247
+ "loss": 0.6762,
1248
+ "step": 1770
1249
+ },
1250
+ {
1251
+ "epoch": 0.1161652417933825,
1252
+ "grad_norm": 13.078874026489483,
1253
+ "learning_rate": 2.9157480252179156e-05,
1254
+ "loss": 0.7189,
1255
+ "step": 1780
1256
+ },
1257
+ {
1258
+ "epoch": 0.11681785551132284,
1259
+ "grad_norm": 8.585825980992096,
1260
+ "learning_rate": 2.9147184920192745e-05,
1261
+ "loss": 0.7142,
1262
+ "step": 1790
1263
+ },
1264
+ {
1265
+ "epoch": 0.1174704692292632,
1266
+ "grad_norm": 138.05135197182966,
1267
+ "learning_rate": 2.9136828906788765e-05,
1268
+ "loss": 0.6514,
1269
+ "step": 1800
1270
+ },
1271
+ {
1272
+ "epoch": 0.11812308294720356,
1273
+ "grad_norm": 2.9764498791953167,
1274
+ "learning_rate": 2.9126412256387172e-05,
1275
+ "loss": 0.6835,
1276
+ "step": 1810
1277
+ },
1278
+ {
1279
+ "epoch": 0.1187756966651439,
1280
+ "grad_norm": 10.553495101154766,
1281
+ "learning_rate": 2.9115935013668038e-05,
1282
+ "loss": 0.7049,
1283
+ "step": 1820
1284
+ },
1285
+ {
1286
+ "epoch": 0.11942831038308425,
1287
+ "grad_norm": 3.8520760029457755,
1288
+ "learning_rate": 2.910539722357132e-05,
1289
+ "loss": 0.6805,
1290
+ "step": 1830
1291
+ },
1292
+ {
1293
+ "epoch": 0.1200809241010246,
1294
+ "grad_norm": 6.002281391018973,
1295
+ "learning_rate": 2.9094798931296692e-05,
1296
+ "loss": 0.7044,
1297
+ "step": 1840
1298
+ },
1299
+ {
1300
+ "epoch": 0.12073353781896495,
1301
+ "grad_norm": 9.04002888227592,
1302
+ "learning_rate": 2.9084140182303328e-05,
1303
+ "loss": 0.7221,
1304
+ "step": 1850
1305
+ },
1306
+ {
1307
+ "epoch": 0.12138615153690531,
1308
+ "grad_norm": 2.324509546376411,
1309
+ "learning_rate": 2.907342102230972e-05,
1310
+ "loss": 0.7,
1311
+ "step": 1860
1312
+ },
1313
+ {
1314
+ "epoch": 0.12203876525484565,
1315
+ "grad_norm": 4.136482440945801,
1316
+ "learning_rate": 2.9062641497293485e-05,
1317
+ "loss": 0.7213,
1318
+ "step": 1870
1319
+ },
1320
+ {
1321
+ "epoch": 0.12269137897278601,
1322
+ "grad_norm": 2.9193932096141673,
1323
+ "learning_rate": 2.9051801653491158e-05,
1324
+ "loss": 0.6656,
1325
+ "step": 1880
1326
+ },
1327
+ {
1328
+ "epoch": 0.12334399269072636,
1329
+ "grad_norm": 6.319528726800553,
1330
+ "learning_rate": 2.9040901537398008e-05,
1331
+ "loss": 0.6701,
1332
+ "step": 1890
1333
+ },
1334
+ {
1335
+ "epoch": 0.1239966064086667,
1336
+ "grad_norm": 3.5042010027049533,
1337
+ "learning_rate": 2.9029941195767824e-05,
1338
+ "loss": 0.6454,
1339
+ "step": 1900
1340
+ },
1341
+ {
1342
+ "epoch": 0.12464922012660706,
1343
+ "grad_norm": 4.3096531856338895,
1344
+ "learning_rate": 2.9018920675612712e-05,
1345
+ "loss": 0.6818,
1346
+ "step": 1910
1347
+ },
1348
+ {
1349
+ "epoch": 0.1253018338445474,
1350
+ "grad_norm": 6.849873350879978,
1351
+ "learning_rate": 2.900784002420292e-05,
1352
+ "loss": 0.7674,
1353
+ "step": 1920
1354
+ },
1355
+ {
1356
+ "epoch": 0.12595444756248778,
1357
+ "grad_norm": 7.645127543651015,
1358
+ "learning_rate": 2.89966992890666e-05,
1359
+ "loss": 0.7,
1360
+ "step": 1930
1361
+ },
1362
+ {
1363
+ "epoch": 0.12660706128042812,
1364
+ "grad_norm": 3.334578297503325,
1365
+ "learning_rate": 2.8985498517989623e-05,
1366
+ "loss": 0.6783,
1367
+ "step": 1940
1368
+ },
1369
+ {
1370
+ "epoch": 0.12725967499836846,
1371
+ "grad_norm": 7.91381208921764,
1372
+ "learning_rate": 2.897423775901538e-05,
1373
+ "loss": 0.7327,
1374
+ "step": 1950
1375
+ },
1376
+ {
1377
+ "epoch": 0.12791228871630883,
1378
+ "grad_norm": 7.74516810255062,
1379
+ "learning_rate": 2.8962917060444562e-05,
1380
+ "loss": 0.7145,
1381
+ "step": 1960
1382
+ },
1383
+ {
1384
+ "epoch": 0.12856490243424917,
1385
+ "grad_norm": 5.468499401345368,
1386
+ "learning_rate": 2.8951536470834957e-05,
1387
+ "loss": 0.6807,
1388
+ "step": 1970
1389
+ },
1390
+ {
1391
+ "epoch": 0.12921751615218952,
1392
+ "grad_norm": 3.7005534196349963,
1393
+ "learning_rate": 2.894009603900125e-05,
1394
+ "loss": 0.7004,
1395
+ "step": 1980
1396
+ },
1397
+ {
1398
+ "epoch": 0.12987012987012986,
1399
+ "grad_norm": 3.6355286647446716,
1400
+ "learning_rate": 2.89285958140148e-05,
1401
+ "loss": 0.6804,
1402
+ "step": 1990
1403
+ },
1404
+ {
1405
+ "epoch": 0.13052274358807023,
1406
+ "grad_norm": 4.199898882057381,
1407
+ "learning_rate": 2.891703584520343e-05,
1408
+ "loss": 0.7268,
1409
+ "step": 2000
1410
+ },
1411
+ {
1412
+ "epoch": 0.13117535730601057,
1413
+ "grad_norm": 4.9058604480600385,
1414
+ "learning_rate": 2.8905416182151244e-05,
1415
+ "loss": 0.7168,
1416
+ "step": 2010
1417
+ },
1418
+ {
1419
+ "epoch": 0.1318279710239509,
1420
+ "grad_norm": 4.2197732320304535,
1421
+ "learning_rate": 2.8893736874698367e-05,
1422
+ "loss": 0.701,
1423
+ "step": 2020
1424
+ },
1425
+ {
1426
+ "epoch": 0.13248058474189128,
1427
+ "grad_norm": 4.66981547707892,
1428
+ "learning_rate": 2.888199797294078e-05,
1429
+ "loss": 0.6624,
1430
+ "step": 2030
1431
+ },
1432
+ {
1433
+ "epoch": 0.13313319845983163,
1434
+ "grad_norm": 2.1811717459296274,
1435
+ "learning_rate": 2.887019952723006e-05,
1436
+ "loss": 0.7181,
1437
+ "step": 2040
1438
+ },
1439
+ {
1440
+ "epoch": 0.13378581217777197,
1441
+ "grad_norm": 5.9404267175163135,
1442
+ "learning_rate": 2.8858341588173194e-05,
1443
+ "loss": 0.7231,
1444
+ "step": 2050
1445
+ },
1446
+ {
1447
+ "epoch": 0.13443842589571234,
1448
+ "grad_norm": 3.279458419701383,
1449
+ "learning_rate": 2.884642420663236e-05,
1450
+ "loss": 0.6863,
1451
+ "step": 2060
1452
+ },
1453
+ {
1454
+ "epoch": 0.13509103961365268,
1455
+ "grad_norm": 3.441960856231174,
1456
+ "learning_rate": 2.8834447433724693e-05,
1457
+ "loss": 0.6985,
1458
+ "step": 2070
1459
+ },
1460
+ {
1461
+ "epoch": 0.13574365333159302,
1462
+ "grad_norm": 6.296333990212765,
1463
+ "learning_rate": 2.8822411320822074e-05,
1464
+ "loss": 0.7166,
1465
+ "step": 2080
1466
+ },
1467
+ {
1468
+ "epoch": 0.1363962670495334,
1469
+ "grad_norm": 4.087401381303271,
1470
+ "learning_rate": 2.881031591955092e-05,
1471
+ "loss": 0.6765,
1472
+ "step": 2090
1473
+ },
1474
+ {
1475
+ "epoch": 0.13704888076747374,
1476
+ "grad_norm": 6.6119114402937305,
1477
+ "learning_rate": 2.879816128179195e-05,
1478
+ "loss": 0.7228,
1479
+ "step": 2100
1480
+ },
1481
+ {
1482
+ "epoch": 0.13770149448541408,
1483
+ "grad_norm": 4.897020539614396,
1484
+ "learning_rate": 2.8785947459679953e-05,
1485
+ "loss": 0.7173,
1486
+ "step": 2110
1487
+ },
1488
+ {
1489
+ "epoch": 0.13835410820335445,
1490
+ "grad_norm": 3.482291928967508,
1491
+ "learning_rate": 2.87736745056036e-05,
1492
+ "loss": 0.685,
1493
+ "step": 2120
1494
+ },
1495
+ {
1496
+ "epoch": 0.1390067219212948,
1497
+ "grad_norm": 12.111542144788995,
1498
+ "learning_rate": 2.876134247220517e-05,
1499
+ "loss": 0.7198,
1500
+ "step": 2130
1501
+ },
1502
+ {
1503
+ "epoch": 0.13965933563923513,
1504
+ "grad_norm": 7.1442170238273786,
1505
+ "learning_rate": 2.8748951412380384e-05,
1506
+ "loss": 0.7549,
1507
+ "step": 2140
1508
+ },
1509
+ {
1510
+ "epoch": 0.14031194935717548,
1511
+ "grad_norm": 4.841978475189581,
1512
+ "learning_rate": 2.873650137927811e-05,
1513
+ "loss": 0.6388,
1514
+ "step": 2150
1515
+ },
1516
+ {
1517
+ "epoch": 0.14096456307511585,
1518
+ "grad_norm": 4.053407088369962,
1519
+ "learning_rate": 2.872399242630018e-05,
1520
+ "loss": 0.6837,
1521
+ "step": 2160
1522
+ },
1523
+ {
1524
+ "epoch": 0.1416171767930562,
1525
+ "grad_norm": 2.537769446137546,
1526
+ "learning_rate": 2.871142460710117e-05,
1527
+ "loss": 0.678,
1528
+ "step": 2170
1529
+ },
1530
+ {
1531
+ "epoch": 0.14226979051099653,
1532
+ "grad_norm": 6.452520531522298,
1533
+ "learning_rate": 2.8698797975588133e-05,
1534
+ "loss": 0.669,
1535
+ "step": 2180
1536
+ },
1537
+ {
1538
+ "epoch": 0.1429224042289369,
1539
+ "grad_norm": 6.840893292905677,
1540
+ "learning_rate": 2.868611258592038e-05,
1541
+ "loss": 0.7022,
1542
+ "step": 2190
1543
+ },
1544
+ {
1545
+ "epoch": 0.14357501794687724,
1546
+ "grad_norm": 4.634307774411798,
1547
+ "learning_rate": 2.867336849250926e-05,
1548
+ "loss": 0.6873,
1549
+ "step": 2200
1550
+ },
1551
+ {
1552
+ "epoch": 0.14422763166481758,
1553
+ "grad_norm": 3.74851807876996,
1554
+ "learning_rate": 2.866056575001793e-05,
1555
+ "loss": 0.6946,
1556
+ "step": 2210
1557
+ },
1558
+ {
1559
+ "epoch": 0.14488024538275796,
1560
+ "grad_norm": 2.0416537952666123,
1561
+ "learning_rate": 2.8647704413361095e-05,
1562
+ "loss": 0.6637,
1563
+ "step": 2220
1564
+ },
1565
+ {
1566
+ "epoch": 0.1455328591006983,
1567
+ "grad_norm": 3.555607066840982,
1568
+ "learning_rate": 2.863478453770479e-05,
1569
+ "loss": 0.71,
1570
+ "step": 2230
1571
+ },
1572
+ {
1573
+ "epoch": 0.14618547281863864,
1574
+ "grad_norm": 5.481578146356155,
1575
+ "learning_rate": 2.862180617846615e-05,
1576
+ "loss": 0.7335,
1577
+ "step": 2240
1578
+ },
1579
+ {
1580
+ "epoch": 0.146838086536579,
1581
+ "grad_norm": 4.089959406196587,
1582
+ "learning_rate": 2.8608769391313153e-05,
1583
+ "loss": 0.6951,
1584
+ "step": 2250
1585
+ },
1586
+ {
1587
+ "epoch": 0.14749070025451935,
1588
+ "grad_norm": 4.054901293812647,
1589
+ "learning_rate": 2.8595674232164403e-05,
1590
+ "loss": 0.6933,
1591
+ "step": 2260
1592
+ },
1593
+ {
1594
+ "epoch": 0.1481433139724597,
1595
+ "grad_norm": 11.977393154495003,
1596
+ "learning_rate": 2.8582520757188858e-05,
1597
+ "loss": 0.6793,
1598
+ "step": 2270
1599
+ },
1600
+ {
1601
+ "epoch": 0.14879592769040006,
1602
+ "grad_norm": 9.862463610911956,
1603
+ "learning_rate": 2.856930902280563e-05,
1604
+ "loss": 0.693,
1605
+ "step": 2280
1606
+ },
1607
+ {
1608
+ "epoch": 0.1494485414083404,
1609
+ "grad_norm": 6.6933607998065305,
1610
+ "learning_rate": 2.8556039085683717e-05,
1611
+ "loss": 0.6512,
1612
+ "step": 2290
1613
+ },
1614
+ {
1615
+ "epoch": 0.15010115512628075,
1616
+ "grad_norm": 13.33031435802581,
1617
+ "learning_rate": 2.8542711002741765e-05,
1618
+ "loss": 0.6818,
1619
+ "step": 2300
1620
+ },
1621
+ {
1622
+ "epoch": 0.1507537688442211,
1623
+ "grad_norm": 3.55607266109624,
1624
+ "learning_rate": 2.8529324831147817e-05,
1625
+ "loss": 0.6969,
1626
+ "step": 2310
1627
+ },
1628
+ {
1629
+ "epoch": 0.15140638256216146,
1630
+ "grad_norm": 2.76158562626684,
1631
+ "learning_rate": 2.8515880628319084e-05,
1632
+ "loss": 0.6469,
1633
+ "step": 2320
1634
+ },
1635
+ {
1636
+ "epoch": 0.1520589962801018,
1637
+ "grad_norm": 14.835614032644079,
1638
+ "learning_rate": 2.8502378451921686e-05,
1639
+ "loss": 0.7095,
1640
+ "step": 2330
1641
+ },
1642
+ {
1643
+ "epoch": 0.15271160999804215,
1644
+ "grad_norm": 3.837370004844092,
1645
+ "learning_rate": 2.8488818359870418e-05,
1646
+ "loss": 0.6549,
1647
+ "step": 2340
1648
+ },
1649
+ {
1650
+ "epoch": 0.15336422371598252,
1651
+ "grad_norm": 8.077714625547088,
1652
+ "learning_rate": 2.8475200410328477e-05,
1653
+ "loss": 0.7036,
1654
+ "step": 2350
1655
+ },
1656
+ {
1657
+ "epoch": 0.15401683743392286,
1658
+ "grad_norm": 4.208380267696714,
1659
+ "learning_rate": 2.846152466170724e-05,
1660
+ "loss": 0.7083,
1661
+ "step": 2360
1662
+ },
1663
+ {
1664
+ "epoch": 0.1546694511518632,
1665
+ "grad_norm": 5.882366675192563,
1666
+ "learning_rate": 2.8447791172665994e-05,
1667
+ "loss": 0.6774,
1668
+ "step": 2370
1669
+ },
1670
+ {
1671
+ "epoch": 0.15532206486980357,
1672
+ "grad_norm": 10.332970110344341,
1673
+ "learning_rate": 2.8434000002111686e-05,
1674
+ "loss": 0.6871,
1675
+ "step": 2380
1676
+ },
1677
+ {
1678
+ "epoch": 0.15597467858774391,
1679
+ "grad_norm": 5.233682432902447,
1680
+ "learning_rate": 2.84201512091987e-05,
1681
+ "loss": 0.6685,
1682
+ "step": 2390
1683
+ },
1684
+ {
1685
+ "epoch": 0.15662729230568426,
1686
+ "grad_norm": 4.051922217192083,
1687
+ "learning_rate": 2.840624485332855e-05,
1688
+ "loss": 0.6893,
1689
+ "step": 2400
1690
+ },
1691
+ {
1692
+ "epoch": 0.15727990602362463,
1693
+ "grad_norm": 8.208037033800602,
1694
+ "learning_rate": 2.8392280994149673e-05,
1695
+ "loss": 0.7163,
1696
+ "step": 2410
1697
+ },
1698
+ {
1699
+ "epoch": 0.15793251974156497,
1700
+ "grad_norm": 6.38338502443,
1701
+ "learning_rate": 2.8378259691557143e-05,
1702
+ "loss": 0.6738,
1703
+ "step": 2420
1704
+ },
1705
+ {
1706
+ "epoch": 0.1585851334595053,
1707
+ "grad_norm": 5.91196516331796,
1708
+ "learning_rate": 2.8364181005692437e-05,
1709
+ "loss": 0.6777,
1710
+ "step": 2430
1711
+ },
1712
+ {
1713
+ "epoch": 0.15923774717744568,
1714
+ "grad_norm": 4.255829123415314,
1715
+ "learning_rate": 2.835004499694316e-05,
1716
+ "loss": 0.7101,
1717
+ "step": 2440
1718
+ },
1719
+ {
1720
+ "epoch": 0.15989036089538602,
1721
+ "grad_norm": 6.462145986397376,
1722
+ "learning_rate": 2.833585172594279e-05,
1723
+ "loss": 0.7031,
1724
+ "step": 2450
1725
+ },
1726
+ {
1727
+ "epoch": 0.16054297461332637,
1728
+ "grad_norm": 4.701946326296281,
1729
+ "learning_rate": 2.8321601253570425e-05,
1730
+ "loss": 0.7195,
1731
+ "step": 2460
1732
+ },
1733
+ {
1734
+ "epoch": 0.16119558833126674,
1735
+ "grad_norm": 2.7081882046671337,
1736
+ "learning_rate": 2.830729364095051e-05,
1737
+ "loss": 0.697,
1738
+ "step": 2470
1739
+ },
1740
+ {
1741
+ "epoch": 0.16184820204920708,
1742
+ "grad_norm": 12.027371026479301,
1743
+ "learning_rate": 2.8292928949452578e-05,
1744
+ "loss": 0.6701,
1745
+ "step": 2480
1746
+ },
1747
+ {
1748
+ "epoch": 0.16250081576714742,
1749
+ "grad_norm": 4.375553205119334,
1750
+ "learning_rate": 2.8278507240691e-05,
1751
+ "loss": 0.6698,
1752
+ "step": 2490
1753
+ },
1754
+ {
1755
+ "epoch": 0.16315342948508776,
1756
+ "grad_norm": 2.3145460407904968,
1757
+ "learning_rate": 2.8264028576524714e-05,
1758
+ "loss": 0.6619,
1759
+ "step": 2500
1760
+ },
1761
+ {
1762
+ "epoch": 0.16380604320302813,
1763
+ "grad_norm": 9.62186450170952,
1764
+ "learning_rate": 2.824949301905694e-05,
1765
+ "loss": 0.7049,
1766
+ "step": 2510
1767
+ },
1768
+ {
1769
+ "epoch": 0.16445865692096848,
1770
+ "grad_norm": 3.242262212053335,
1771
+ "learning_rate": 2.8234900630634945e-05,
1772
+ "loss": 0.6684,
1773
+ "step": 2520
1774
+ },
1775
+ {
1776
+ "epoch": 0.16511127063890882,
1777
+ "grad_norm": 5.874441891397036,
1778
+ "learning_rate": 2.8220251473849747e-05,
1779
+ "loss": 0.6841,
1780
+ "step": 2530
1781
+ },
1782
+ {
1783
+ "epoch": 0.1657638843568492,
1784
+ "grad_norm": 5.5132935867506685,
1785
+ "learning_rate": 2.8205545611535876e-05,
1786
+ "loss": 0.7077,
1787
+ "step": 2540
1788
+ },
1789
+ {
1790
+ "epoch": 0.16641649807478953,
1791
+ "grad_norm": 4.178673623014923,
1792
+ "learning_rate": 2.8190783106771076e-05,
1793
+ "loss": 0.6779,
1794
+ "step": 2550
1795
+ },
1796
+ {
1797
+ "epoch": 0.16706911179272987,
1798
+ "grad_norm": 3.8308465742128974,
1799
+ "learning_rate": 2.8175964022876057e-05,
1800
+ "loss": 0.6638,
1801
+ "step": 2560
1802
+ },
1803
+ {
1804
+ "epoch": 0.16772172551067024,
1805
+ "grad_norm": 3.122478077844367,
1806
+ "learning_rate": 2.8161088423414197e-05,
1807
+ "loss": 0.7063,
1808
+ "step": 2570
1809
+ },
1810
+ {
1811
+ "epoch": 0.1683743392286106,
1812
+ "grad_norm": 4.633331835812846,
1813
+ "learning_rate": 2.8146156372191306e-05,
1814
+ "loss": 0.6555,
1815
+ "step": 2580
1816
+ },
1817
+ {
1818
+ "epoch": 0.16902695294655093,
1819
+ "grad_norm": 17.541201672163616,
1820
+ "learning_rate": 2.8131167933255323e-05,
1821
+ "loss": 0.7001,
1822
+ "step": 2590
1823
+ },
1824
+ {
1825
+ "epoch": 0.1696795666644913,
1826
+ "grad_norm": 6.134101489242109,
1827
+ "learning_rate": 2.8116123170896046e-05,
1828
+ "loss": 0.7173,
1829
+ "step": 2600
1830
+ },
1831
+ {
1832
+ "epoch": 0.17033218038243164,
1833
+ "grad_norm": 8.073444833192916,
1834
+ "learning_rate": 2.8101022149644868e-05,
1835
+ "loss": 0.6771,
1836
+ "step": 2610
1837
+ },
1838
+ {
1839
+ "epoch": 0.17098479410037198,
1840
+ "grad_norm": 6.780231733384814,
1841
+ "learning_rate": 2.8085864934274488e-05,
1842
+ "loss": 0.7313,
1843
+ "step": 2620
1844
+ },
1845
+ {
1846
+ "epoch": 0.17163740781831235,
1847
+ "grad_norm": 3.857057315644847,
1848
+ "learning_rate": 2.8070651589798638e-05,
1849
+ "loss": 0.6844,
1850
+ "step": 2630
1851
+ },
1852
+ {
1853
+ "epoch": 0.1722900215362527,
1854
+ "grad_norm": 2.6968793212573106,
1855
+ "learning_rate": 2.805538218147181e-05,
1856
+ "loss": 0.6806,
1857
+ "step": 2640
1858
+ },
1859
+ {
1860
+ "epoch": 0.17294263525419304,
1861
+ "grad_norm": 3.347039146921558,
1862
+ "learning_rate": 2.8040056774788968e-05,
1863
+ "loss": 0.6993,
1864
+ "step": 2650
1865
+ },
1866
+ {
1867
+ "epoch": 0.17359524897213338,
1868
+ "grad_norm": 3.3015836383740456,
1869
+ "learning_rate": 2.8024675435485257e-05,
1870
+ "loss": 0.7268,
1871
+ "step": 2660
1872
+ },
1873
+ {
1874
+ "epoch": 0.17424786269007375,
1875
+ "grad_norm": 3.317639807807373,
1876
+ "learning_rate": 2.8009238229535758e-05,
1877
+ "loss": 0.6674,
1878
+ "step": 2670
1879
+ },
1880
+ {
1881
+ "epoch": 0.1749004764080141,
1882
+ "grad_norm": 5.874714621247871,
1883
+ "learning_rate": 2.7993745223155156e-05,
1884
+ "loss": 0.6571,
1885
+ "step": 2680
1886
+ },
1887
+ {
1888
+ "epoch": 0.17555309012595444,
1889
+ "grad_norm": 3.435629734690448,
1890
+ "learning_rate": 2.7978196482797496e-05,
1891
+ "loss": 0.6998,
1892
+ "step": 2690
1893
+ },
1894
+ {
1895
+ "epoch": 0.1762057038438948,
1896
+ "grad_norm": 30.168294226928044,
1897
+ "learning_rate": 2.7962592075155875e-05,
1898
+ "loss": 0.6531,
1899
+ "step": 2700
1900
+ },
1901
+ {
1902
+ "epoch": 0.17685831756183515,
1903
+ "grad_norm": 3.6088167890096865,
1904
+ "learning_rate": 2.794693206716217e-05,
1905
+ "loss": 0.644,
1906
+ "step": 2710
1907
+ },
1908
+ {
1909
+ "epoch": 0.1775109312797755,
1910
+ "grad_norm": 5.471338847334227,
1911
+ "learning_rate": 2.7931216525986733e-05,
1912
+ "loss": 0.6864,
1913
+ "step": 2720
1914
+ },
1915
+ {
1916
+ "epoch": 0.17816354499771586,
1917
+ "grad_norm": 3.5451837616331763,
1918
+ "learning_rate": 2.7915445519038124e-05,
1919
+ "loss": 0.6794,
1920
+ "step": 2730
1921
+ },
1922
+ {
1923
+ "epoch": 0.1788161587156562,
1924
+ "grad_norm": 4.9951779955670705,
1925
+ "learning_rate": 2.7899619113962806e-05,
1926
+ "loss": 0.6702,
1927
+ "step": 2740
1928
+ },
1929
+ {
1930
+ "epoch": 0.17946877243359655,
1931
+ "grad_norm": 6.849902588089016,
1932
+ "learning_rate": 2.7883737378644866e-05,
1933
+ "loss": 0.679,
1934
+ "step": 2750
1935
+ },
1936
+ {
1937
+ "epoch": 0.18012138615153692,
1938
+ "grad_norm": 11.250488948793029,
1939
+ "learning_rate": 2.786780038120572e-05,
1940
+ "loss": 0.7153,
1941
+ "step": 2760
1942
+ },
1943
+ {
1944
+ "epoch": 0.18077399986947726,
1945
+ "grad_norm": 13.184900398210909,
1946
+ "learning_rate": 2.7851808190003803e-05,
1947
+ "loss": 0.6734,
1948
+ "step": 2770
1949
+ },
1950
+ {
1951
+ "epoch": 0.1814266135874176,
1952
+ "grad_norm": 7.234749638062084,
1953
+ "learning_rate": 2.7835760873634318e-05,
1954
+ "loss": 0.6677,
1955
+ "step": 2780
1956
+ },
1957
+ {
1958
+ "epoch": 0.18207922730535797,
1959
+ "grad_norm": 13.085129406019094,
1960
+ "learning_rate": 2.7819658500928897e-05,
1961
+ "loss": 0.691,
1962
+ "step": 2790
1963
+ },
1964
+ {
1965
+ "epoch": 0.1827318410232983,
1966
+ "grad_norm": 3.5248377823535,
1967
+ "learning_rate": 2.780350114095533e-05,
1968
+ "loss": 0.6397,
1969
+ "step": 2800
1970
+ },
1971
+ {
1972
+ "epoch": 0.18338445474123866,
1973
+ "grad_norm": 26.796889805025064,
1974
+ "learning_rate": 2.7787288863017263e-05,
1975
+ "loss": 0.7222,
1976
+ "step": 2810
1977
+ },
1978
+ {
1979
+ "epoch": 0.184037068459179,
1980
+ "grad_norm": 3.125330335323775,
1981
+ "learning_rate": 2.77710217366539e-05,
1982
+ "loss": 0.7082,
1983
+ "step": 2820
1984
+ },
1985
+ {
1986
+ "epoch": 0.18468968217711937,
1987
+ "grad_norm": 5.07678317608623,
1988
+ "learning_rate": 2.775469983163972e-05,
1989
+ "loss": 0.642,
1990
+ "step": 2830
1991
+ },
1992
+ {
1993
+ "epoch": 0.1853422958950597,
1994
+ "grad_norm": 3.8465548570361605,
1995
+ "learning_rate": 2.773832321798414e-05,
1996
+ "loss": 0.735,
1997
+ "step": 2840
1998
+ },
1999
+ {
2000
+ "epoch": 0.18599490961300005,
2001
+ "grad_norm": 2.596039278811819,
2002
+ "learning_rate": 2.7721891965931252e-05,
2003
+ "loss": 0.6885,
2004
+ "step": 2850
2005
+ },
2006
+ {
2007
+ "epoch": 0.18664752333094042,
2008
+ "grad_norm": 14.003078667143276,
2009
+ "learning_rate": 2.7705406145959505e-05,
2010
+ "loss": 0.7036,
2011
+ "step": 2860
2012
+ },
2013
+ {
2014
+ "epoch": 0.18730013704888077,
2015
+ "grad_norm": 4.5877627845774365,
2016
+ "learning_rate": 2.7688865828781413e-05,
2017
+ "loss": 0.6995,
2018
+ "step": 2870
2019
+ },
2020
+ {
2021
+ "epoch": 0.1879527507668211,
2022
+ "grad_norm": 7.044776485625493,
2023
+ "learning_rate": 2.767227108534323e-05,
2024
+ "loss": 0.7161,
2025
+ "step": 2880
2026
+ },
2027
+ {
2028
+ "epoch": 0.18860536448476148,
2029
+ "grad_norm": 3.072683258675077,
2030
+ "learning_rate": 2.765562198682468e-05,
2031
+ "loss": 0.7406,
2032
+ "step": 2890
2033
+ },
2034
+ {
2035
+ "epoch": 0.18925797820270182,
2036
+ "grad_norm": 8.84720999495458,
2037
+ "learning_rate": 2.763891860463861e-05,
2038
+ "loss": 0.6727,
2039
+ "step": 2900
2040
+ },
2041
+ {
2042
+ "epoch": 0.18991059192064216,
2043
+ "grad_norm": 9.494450604703584,
2044
+ "learning_rate": 2.7622161010430717e-05,
2045
+ "loss": 0.6859,
2046
+ "step": 2910
2047
+ },
2048
+ {
2049
+ "epoch": 0.19056320563858253,
2050
+ "grad_norm": 2.803990269441359,
2051
+ "learning_rate": 2.7605349276079238e-05,
2052
+ "loss": 0.7,
2053
+ "step": 2920
2054
+ },
2055
+ {
2056
+ "epoch": 0.19121581935652288,
2057
+ "grad_norm": 6.501435928194476,
2058
+ "learning_rate": 2.7588483473694613e-05,
2059
+ "loss": 0.66,
2060
+ "step": 2930
2061
+ },
2062
+ {
2063
+ "epoch": 0.19186843307446322,
2064
+ "grad_norm": 3.9434365221991667,
2065
+ "learning_rate": 2.7571563675619202e-05,
2066
+ "loss": 0.6575,
2067
+ "step": 2940
2068
+ },
2069
+ {
2070
+ "epoch": 0.1925210467924036,
2071
+ "grad_norm": 6.473206095572867,
2072
+ "learning_rate": 2.7554589954426986e-05,
2073
+ "loss": 0.6509,
2074
+ "step": 2950
2075
+ },
2076
+ {
2077
+ "epoch": 0.19317366051034393,
2078
+ "grad_norm": 6.359600241231479,
2079
+ "learning_rate": 2.7537562382923217e-05,
2080
+ "loss": 0.6554,
2081
+ "step": 2960
2082
+ },
2083
+ {
2084
+ "epoch": 0.19382627422828427,
2085
+ "grad_norm": 9.209939347687689,
2086
+ "learning_rate": 2.752048103414413e-05,
2087
+ "loss": 0.723,
2088
+ "step": 2970
2089
+ },
2090
+ {
2091
+ "epoch": 0.19447888794622464,
2092
+ "grad_norm": 23.703947692957573,
2093
+ "learning_rate": 2.7503345981356633e-05,
2094
+ "loss": 0.6927,
2095
+ "step": 2980
2096
+ },
2097
+ {
2098
+ "epoch": 0.19513150166416499,
2099
+ "grad_norm": 8.212074266427711,
2100
+ "learning_rate": 2.7486157298057986e-05,
2101
+ "loss": 0.6999,
2102
+ "step": 2990
2103
+ },
2104
+ {
2105
+ "epoch": 0.19578411538210533,
2106
+ "grad_norm": 5.189620722030213,
2107
+ "learning_rate": 2.7468915057975487e-05,
2108
+ "loss": 0.6722,
2109
+ "step": 3000
2110
+ },
2111
+ {
2112
+ "epoch": 0.19643672910004567,
2113
+ "grad_norm": 4.021048004797352,
2114
+ "learning_rate": 2.745161933506614e-05,
2115
+ "loss": 0.66,
2116
+ "step": 3010
2117
+ },
2118
+ {
2119
+ "epoch": 0.19708934281798604,
2120
+ "grad_norm": 4.156307822377388,
2121
+ "learning_rate": 2.7434270203516373e-05,
2122
+ "loss": 0.6987,
2123
+ "step": 3020
2124
+ },
2125
+ {
2126
+ "epoch": 0.19774195653592638,
2127
+ "grad_norm": 4.75441596904026,
2128
+ "learning_rate": 2.7416867737741683e-05,
2129
+ "loss": 0.6963,
2130
+ "step": 3030
2131
+ },
2132
+ {
2133
+ "epoch": 0.19839457025386673,
2134
+ "grad_norm": 5.880889862093012,
2135
+ "learning_rate": 2.739941201238635e-05,
2136
+ "loss": 0.6445,
2137
+ "step": 3040
2138
+ },
2139
+ {
2140
+ "epoch": 0.1990471839718071,
2141
+ "grad_norm": 4.686264689115436,
2142
+ "learning_rate": 2.738190310232308e-05,
2143
+ "loss": 0.751,
2144
+ "step": 3050
2145
+ },
2146
+ {
2147
+ "epoch": 0.19969979768974744,
2148
+ "grad_norm": 5.015165789251315,
2149
+ "learning_rate": 2.7364341082652716e-05,
2150
+ "loss": 0.6676,
2151
+ "step": 3060
2152
+ },
2153
+ {
2154
+ "epoch": 0.20035241140768778,
2155
+ "grad_norm": 4.629542414090964,
2156
+ "learning_rate": 2.734672602870391e-05,
2157
+ "loss": 0.6625,
2158
+ "step": 3070
2159
+ },
2160
+ {
2161
+ "epoch": 0.20100502512562815,
2162
+ "grad_norm": 3.582640218606122,
2163
+ "learning_rate": 2.7329058016032773e-05,
2164
+ "loss": 0.7243,
2165
+ "step": 3080
2166
+ },
2167
+ {
2168
+ "epoch": 0.2016576388435685,
2169
+ "grad_norm": 35.16576433756719,
2170
+ "learning_rate": 2.7311337120422588e-05,
2171
+ "loss": 0.6734,
2172
+ "step": 3090
2173
+ },
2174
+ {
2175
+ "epoch": 0.20231025256150884,
2176
+ "grad_norm": 8.429048501615004,
2177
+ "learning_rate": 2.729356341788347e-05,
2178
+ "loss": 0.6761,
2179
+ "step": 3100
2180
+ },
2181
+ {
2182
+ "epoch": 0.2029628662794492,
2183
+ "grad_norm": 10.361847043143795,
2184
+ "learning_rate": 2.727573698465202e-05,
2185
+ "loss": 0.691,
2186
+ "step": 3110
2187
+ },
2188
+ {
2189
+ "epoch": 0.20361547999738955,
2190
+ "grad_norm": 3.125915545815778,
2191
+ "learning_rate": 2.7257857897191044e-05,
2192
+ "loss": 0.6439,
2193
+ "step": 3120
2194
+ },
2195
+ {
2196
+ "epoch": 0.2042680937153299,
2197
+ "grad_norm": 3.7497179561089937,
2198
+ "learning_rate": 2.7239926232189167e-05,
2199
+ "loss": 0.6707,
2200
+ "step": 3130
2201
+ },
2202
+ {
2203
+ "epoch": 0.20492070743327026,
2204
+ "grad_norm": 3.56873592233637,
2205
+ "learning_rate": 2.722194206656056e-05,
2206
+ "loss": 0.6673,
2207
+ "step": 3140
2208
+ },
2209
+ {
2210
+ "epoch": 0.2055733211512106,
2211
+ "grad_norm": 10.54660445254849,
2212
+ "learning_rate": 2.7203905477444574e-05,
2213
+ "loss": 0.6829,
2214
+ "step": 3150
2215
+ },
2216
+ {
2217
+ "epoch": 0.20622593486915095,
2218
+ "grad_norm": 3.6820544103925608,
2219
+ "learning_rate": 2.7185816542205407e-05,
2220
+ "loss": 0.6568,
2221
+ "step": 3160
2222
+ },
2223
+ {
2224
+ "epoch": 0.2068785485870913,
2225
+ "grad_norm": 8.593912019069307,
2226
+ "learning_rate": 2.7167675338431813e-05,
2227
+ "loss": 0.6375,
2228
+ "step": 3170
2229
+ },
2230
+ {
2231
+ "epoch": 0.20753116230503166,
2232
+ "grad_norm": 4.561901523582492,
2233
+ "learning_rate": 2.7149481943936718e-05,
2234
+ "loss": 0.6929,
2235
+ "step": 3180
2236
+ },
2237
+ {
2238
+ "epoch": 0.208183776022972,
2239
+ "grad_norm": 3.3662024382508022,
2240
+ "learning_rate": 2.7131236436756917e-05,
2241
+ "loss": 0.7155,
2242
+ "step": 3190
2243
+ },
2244
+ {
2245
+ "epoch": 0.20883638974091234,
2246
+ "grad_norm": 3.4110738212405542,
2247
+ "learning_rate": 2.7112938895152733e-05,
2248
+ "loss": 0.7195,
2249
+ "step": 3200
2250
+ },
2251
+ {
2252
+ "epoch": 0.2094890034588527,
2253
+ "grad_norm": 3.6699604643477413,
2254
+ "learning_rate": 2.709458939760768e-05,
2255
+ "loss": 0.6266,
2256
+ "step": 3210
2257
+ },
2258
+ {
2259
+ "epoch": 0.21014161717679306,
2260
+ "grad_norm": 1.7543595371849152,
2261
+ "learning_rate": 2.7076188022828125e-05,
2262
+ "loss": 0.6956,
2263
+ "step": 3220
2264
+ },
2265
+ {
2266
+ "epoch": 0.2107942308947334,
2267
+ "grad_norm": 3.9842297097437647,
2268
+ "learning_rate": 2.7057734849742944e-05,
2269
+ "loss": 0.6616,
2270
+ "step": 3230
2271
+ },
2272
+ {
2273
+ "epoch": 0.21144684461267377,
2274
+ "grad_norm": 5.223697167736633,
2275
+ "learning_rate": 2.7039229957503207e-05,
2276
+ "loss": 0.6951,
2277
+ "step": 3240
2278
+ },
2279
+ {
2280
+ "epoch": 0.2120994583306141,
2281
+ "grad_norm": 4.189342719626237,
2282
+ "learning_rate": 2.7020673425481807e-05,
2283
+ "loss": 0.6937,
2284
+ "step": 3250
2285
+ },
2286
+ {
2287
+ "epoch": 0.21275207204855445,
2288
+ "grad_norm": 5.746674612678528,
2289
+ "learning_rate": 2.700206533327315e-05,
2290
+ "loss": 0.6897,
2291
+ "step": 3260
2292
+ },
2293
+ {
2294
+ "epoch": 0.21340468576649482,
2295
+ "grad_norm": 7.965064539148002,
2296
+ "learning_rate": 2.6983405760692782e-05,
2297
+ "loss": 0.6999,
2298
+ "step": 3270
2299
+ },
2300
+ {
2301
+ "epoch": 0.21405729948443517,
2302
+ "grad_norm": 3.6218679643616953,
2303
+ "learning_rate": 2.696469478777708e-05,
2304
+ "loss": 0.6702,
2305
+ "step": 3280
2306
+ },
2307
+ {
2308
+ "epoch": 0.2147099132023755,
2309
+ "grad_norm": 4.021322876113058,
2310
+ "learning_rate": 2.6945932494782878e-05,
2311
+ "loss": 0.736,
2312
+ "step": 3290
2313
+ },
2314
+ {
2315
+ "epoch": 0.21536252692031588,
2316
+ "grad_norm": 5.6555927379479245,
2317
+ "learning_rate": 2.692711896218715e-05,
2318
+ "loss": 0.6576,
2319
+ "step": 3300
2320
+ },
2321
+ {
2322
+ "epoch": 0.21601514063825622,
2323
+ "grad_norm": 5.56743771282241,
2324
+ "learning_rate": 2.6908254270686633e-05,
2325
+ "loss": 0.6824,
2326
+ "step": 3310
2327
+ },
2328
+ {
2329
+ "epoch": 0.21666775435619656,
2330
+ "grad_norm": 51.07644011063222,
2331
+ "learning_rate": 2.688933850119753e-05,
2332
+ "loss": 0.6517,
2333
+ "step": 3320
2334
+ },
2335
+ {
2336
+ "epoch": 0.2173203680741369,
2337
+ "grad_norm": 6.112257177604341,
2338
+ "learning_rate": 2.6870371734855092e-05,
2339
+ "loss": 0.6619,
2340
+ "step": 3330
2341
+ },
2342
+ {
2343
+ "epoch": 0.21797298179207727,
2344
+ "grad_norm": 2.531145729460449,
2345
+ "learning_rate": 2.685135405301335e-05,
2346
+ "loss": 0.7057,
2347
+ "step": 3340
2348
+ },
2349
+ {
2350
+ "epoch": 0.21862559551001762,
2351
+ "grad_norm": 1.995398951056393,
2352
+ "learning_rate": 2.6832285537244697e-05,
2353
+ "loss": 0.687,
2354
+ "step": 3350
2355
+ },
2356
+ {
2357
+ "epoch": 0.21927820922795796,
2358
+ "grad_norm": 2.3570011145840364,
2359
+ "learning_rate": 2.6813166269339587e-05,
2360
+ "loss": 0.6698,
2361
+ "step": 3360
2362
+ },
2363
+ {
2364
+ "epoch": 0.21993082294589833,
2365
+ "grad_norm": 3.6679571799521327,
2366
+ "learning_rate": 2.6793996331306157e-05,
2367
+ "loss": 0.6715,
2368
+ "step": 3370
2369
+ },
2370
+ {
2371
+ "epoch": 0.22058343666383867,
2372
+ "grad_norm": 28.476293508674676,
2373
+ "learning_rate": 2.6774775805369875e-05,
2374
+ "loss": 0.66,
2375
+ "step": 3380
2376
+ },
2377
+ {
2378
+ "epoch": 0.22123605038177901,
2379
+ "grad_norm": 3.2467702810162637,
2380
+ "learning_rate": 2.675550477397321e-05,
2381
+ "loss": 0.6721,
2382
+ "step": 3390
2383
+ },
2384
+ {
2385
+ "epoch": 0.22188866409971938,
2386
+ "grad_norm": 1.6459151219515613,
2387
+ "learning_rate": 2.6736183319775253e-05,
2388
+ "loss": 0.7111,
2389
+ "step": 3400
2390
+ },
2391
+ {
2392
+ "epoch": 0.22254127781765973,
2393
+ "grad_norm": 3.964489549873003,
2394
+ "learning_rate": 2.6716811525651386e-05,
2395
+ "loss": 0.7202,
2396
+ "step": 3410
2397
+ },
2398
+ {
2399
+ "epoch": 0.22319389153560007,
2400
+ "grad_norm": 2.1839922437285586,
2401
+ "learning_rate": 2.6697389474692896e-05,
2402
+ "loss": 0.6455,
2403
+ "step": 3420
2404
+ },
2405
+ {
2406
+ "epoch": 0.22384650525354044,
2407
+ "grad_norm": 6.5190517278902,
2408
+ "learning_rate": 2.6677917250206642e-05,
2409
+ "loss": 0.6543,
2410
+ "step": 3430
2411
+ },
2412
+ {
2413
+ "epoch": 0.22449911897148078,
2414
+ "grad_norm": 3.0950755352607677,
2415
+ "learning_rate": 2.6658394935714707e-05,
2416
+ "loss": 0.6567,
2417
+ "step": 3440
2418
+ },
2419
+ {
2420
+ "epoch": 0.22515173268942112,
2421
+ "grad_norm": 22.06688372148941,
2422
+ "learning_rate": 2.6638822614954007e-05,
2423
+ "loss": 0.673,
2424
+ "step": 3450
2425
+ },
2426
+ {
2427
+ "epoch": 0.2258043464073615,
2428
+ "grad_norm": 4.066518820487963,
2429
+ "learning_rate": 2.6619200371875952e-05,
2430
+ "loss": 0.6879,
2431
+ "step": 3460
2432
+ },
2433
+ {
2434
+ "epoch": 0.22645696012530184,
2435
+ "grad_norm": 3.121077860957678,
2436
+ "learning_rate": 2.659952829064609e-05,
2437
+ "loss": 0.6874,
2438
+ "step": 3470
2439
+ },
2440
+ {
2441
+ "epoch": 0.22710957384324218,
2442
+ "grad_norm": 2.6914813691439923,
2443
+ "learning_rate": 2.6579806455643734e-05,
2444
+ "loss": 0.6774,
2445
+ "step": 3480
2446
+ },
2447
+ {
2448
+ "epoch": 0.22776218756118255,
2449
+ "grad_norm": 4.968423508767704,
2450
+ "learning_rate": 2.656003495146162e-05,
2451
+ "loss": 0.6941,
2452
+ "step": 3490
2453
+ },
2454
+ {
2455
+ "epoch": 0.2284148012791229,
2456
+ "grad_norm": 3.7025765443419836,
2457
+ "learning_rate": 2.6540213862905497e-05,
2458
+ "loss": 0.697,
2459
+ "step": 3500
2460
+ },
2461
+ {
2462
+ "epoch": 0.22906741499706323,
2463
+ "grad_norm": 3.5133821241789924,
2464
+ "learning_rate": 2.652034327499383e-05,
2465
+ "loss": 0.6825,
2466
+ "step": 3510
2467
+ },
2468
+ {
2469
+ "epoch": 0.22972002871500358,
2470
+ "grad_norm": 3.204727293127362,
2471
+ "learning_rate": 2.6500423272957385e-05,
2472
+ "loss": 0.6552,
2473
+ "step": 3520
2474
+ },
2475
+ {
2476
+ "epoch": 0.23037264243294395,
2477
+ "grad_norm": 10.477867050932252,
2478
+ "learning_rate": 2.6480453942238878e-05,
2479
+ "loss": 0.7001,
2480
+ "step": 3530
2481
+ },
2482
+ {
2483
+ "epoch": 0.2310252561508843,
2484
+ "grad_norm": 4.290081854975228,
2485
+ "learning_rate": 2.6460435368492618e-05,
2486
+ "loss": 0.7023,
2487
+ "step": 3540
2488
+ },
2489
+ {
2490
+ "epoch": 0.23167786986882463,
2491
+ "grad_norm": 2.1041454905838695,
2492
+ "learning_rate": 2.6440367637584127e-05,
2493
+ "loss": 0.6998,
2494
+ "step": 3550
2495
+ },
2496
+ {
2497
+ "epoch": 0.232330483586765,
2498
+ "grad_norm": 10.10346106723381,
2499
+ "learning_rate": 2.642025083558978e-05,
2500
+ "loss": 0.7233,
2501
+ "step": 3560
2502
+ },
2503
+ {
2504
+ "epoch": 0.23298309730470534,
2505
+ "grad_norm": 2.801890474132496,
2506
+ "learning_rate": 2.6400085048796427e-05,
2507
+ "loss": 0.6821,
2508
+ "step": 3570
2509
+ },
2510
+ {
2511
+ "epoch": 0.2336357110226457,
2512
+ "grad_norm": 3.935419895594201,
2513
+ "learning_rate": 2.6379870363701032e-05,
2514
+ "loss": 0.7208,
2515
+ "step": 3580
2516
+ },
2517
+ {
2518
+ "epoch": 0.23428832474058606,
2519
+ "grad_norm": 8.554570222512323,
2520
+ "learning_rate": 2.6359606867010294e-05,
2521
+ "loss": 0.6633,
2522
+ "step": 3590
2523
+ },
2524
+ {
2525
+ "epoch": 0.2349409384585264,
2526
+ "grad_norm": 6.675371241157707,
2527
+ "learning_rate": 2.6339294645640287e-05,
2528
+ "loss": 0.6769,
2529
+ "step": 3600
2530
+ },
2531
+ {
2532
+ "epoch": 0.23559355217646674,
2533
+ "grad_norm": 6.178285461410454,
2534
+ "learning_rate": 2.631893378671607e-05,
2535
+ "loss": 0.7073,
2536
+ "step": 3610
2537
+ },
2538
+ {
2539
+ "epoch": 0.2362461658944071,
2540
+ "grad_norm": 17.744119879081158,
2541
+ "learning_rate": 2.6298524377571334e-05,
2542
+ "loss": 0.7105,
2543
+ "step": 3620
2544
+ },
2545
+ {
2546
+ "epoch": 0.23689877961234745,
2547
+ "grad_norm": 16.785021253384297,
2548
+ "learning_rate": 2.6278066505748003e-05,
2549
+ "loss": 0.6887,
2550
+ "step": 3630
2551
+ },
2552
+ {
2553
+ "epoch": 0.2375513933302878,
2554
+ "grad_norm": 3.2589997614122734,
2555
+ "learning_rate": 2.6257560258995883e-05,
2556
+ "loss": 0.6263,
2557
+ "step": 3640
2558
+ },
2559
+ {
2560
+ "epoch": 0.23820400704822817,
2561
+ "grad_norm": 3.492404598170054,
2562
+ "learning_rate": 2.6237005725272266e-05,
2563
+ "loss": 0.7226,
2564
+ "step": 3650
2565
+ },
2566
+ {
2567
+ "epoch": 0.2388566207661685,
2568
+ "grad_norm": 7.319922437830172,
2569
+ "learning_rate": 2.621640299274156e-05,
2570
+ "loss": 0.6675,
2571
+ "step": 3660
2572
+ },
2573
+ {
2574
+ "epoch": 0.23950923448410885,
2575
+ "grad_norm": 2.2589380963047687,
2576
+ "learning_rate": 2.6195752149774927e-05,
2577
+ "loss": 0.7007,
2578
+ "step": 3670
2579
+ },
2580
+ {
2581
+ "epoch": 0.2401618482020492,
2582
+ "grad_norm": 3.531831136500981,
2583
+ "learning_rate": 2.6175053284949867e-05,
2584
+ "loss": 0.6375,
2585
+ "step": 3680
2586
+ },
2587
+ {
2588
+ "epoch": 0.24081446191998956,
2589
+ "grad_norm": 3.79013354707819,
2590
+ "learning_rate": 2.6154306487049882e-05,
2591
+ "loss": 0.6911,
2592
+ "step": 3690
2593
+ },
2594
+ {
2595
+ "epoch": 0.2414670756379299,
2596
+ "grad_norm": 6.397972453338,
2597
+ "learning_rate": 2.613351184506405e-05,
2598
+ "loss": 0.7063,
2599
+ "step": 3700
2600
+ },
2601
+ {
2602
+ "epoch": 0.24211968935587025,
2603
+ "grad_norm": 1.9616647412861352,
2604
+ "learning_rate": 2.6112669448186684e-05,
2605
+ "loss": 0.6643,
2606
+ "step": 3710
2607
+ },
2608
+ {
2609
+ "epoch": 0.24277230307381062,
2610
+ "grad_norm": 5.149479530478246,
2611
+ "learning_rate": 2.6091779385816927e-05,
2612
+ "loss": 0.682,
2613
+ "step": 3720
2614
+ },
2615
+ {
2616
+ "epoch": 0.24342491679175096,
2617
+ "grad_norm": 33.6135334189408,
2618
+ "learning_rate": 2.607084174755837e-05,
2619
+ "loss": 0.6874,
2620
+ "step": 3730
2621
+ },
2622
+ {
2623
+ "epoch": 0.2440775305096913,
2624
+ "grad_norm": 8.824063553443779,
2625
+ "learning_rate": 2.604985662321867e-05,
2626
+ "loss": 0.6784,
2627
+ "step": 3740
2628
+ },
2629
+ {
2630
+ "epoch": 0.24473014422763167,
2631
+ "grad_norm": 4.503480413045945,
2632
+ "learning_rate": 2.602882410280917e-05,
2633
+ "loss": 0.66,
2634
+ "step": 3750
2635
+ },
2636
+ {
2637
+ "epoch": 0.24538275794557202,
2638
+ "grad_norm": 2.976817523113899,
2639
+ "learning_rate": 2.600774427654451e-05,
2640
+ "loss": 0.6528,
2641
+ "step": 3760
2642
+ },
2643
+ {
2644
+ "epoch": 0.24603537166351236,
2645
+ "grad_norm": 3.7759204222408096,
2646
+ "learning_rate": 2.5986617234842235e-05,
2647
+ "loss": 0.7417,
2648
+ "step": 3770
2649
+ },
2650
+ {
2651
+ "epoch": 0.24668798538145273,
2652
+ "grad_norm": 1.8006275301713257,
2653
+ "learning_rate": 2.596544306832241e-05,
2654
+ "loss": 0.6103,
2655
+ "step": 3780
2656
+ },
2657
+ {
2658
+ "epoch": 0.24734059909939307,
2659
+ "grad_norm": 8.715287590950098,
2660
+ "learning_rate": 2.5944221867807232e-05,
2661
+ "loss": 0.6805,
2662
+ "step": 3790
2663
+ },
2664
+ {
2665
+ "epoch": 0.2479932128173334,
2666
+ "grad_norm": 2.512279584335586,
2667
+ "learning_rate": 2.5922953724320642e-05,
2668
+ "loss": 0.6252,
2669
+ "step": 3800
2670
+ },
2671
+ {
2672
+ "epoch": 0.24864582653527378,
2673
+ "grad_norm": 9.093713085191398,
2674
+ "learning_rate": 2.590163872908794e-05,
2675
+ "loss": 0.6693,
2676
+ "step": 3810
2677
+ },
2678
+ {
2679
+ "epoch": 0.24929844025321413,
2680
+ "grad_norm": 2.605969794050745,
2681
+ "learning_rate": 2.5880276973535374e-05,
2682
+ "loss": 0.7169,
2683
+ "step": 3820
2684
+ },
2685
+ {
2686
+ "epoch": 0.24995105397115447,
2687
+ "grad_norm": 1.7406155460998103,
2688
+ "learning_rate": 2.5858868549289773e-05,
2689
+ "loss": 0.673,
2690
+ "step": 3830
2691
+ },
2692
+ {
2693
+ "epoch": 0.2506036676890948,
2694
+ "grad_norm": 24.750209614800486,
2695
+ "learning_rate": 2.5837413548178127e-05,
2696
+ "loss": 0.7151,
2697
+ "step": 3840
2698
+ },
2699
+ {
2700
+ "epoch": 0.25125628140703515,
2701
+ "grad_norm": 1.9145264355240845,
2702
+ "learning_rate": 2.581591206222723e-05,
2703
+ "loss": 0.697,
2704
+ "step": 3850
2705
+ },
2706
+ {
2707
+ "epoch": 0.25190889512497555,
2708
+ "grad_norm": 4.162446186072935,
2709
+ "learning_rate": 2.5794364183663235e-05,
2710
+ "loss": 0.6978,
2711
+ "step": 3860
2712
+ },
2713
+ {
2714
+ "epoch": 0.2525615088429159,
2715
+ "grad_norm": 16.83424712366737,
2716
+ "learning_rate": 2.5772770004911307e-05,
2717
+ "loss": 0.6709,
2718
+ "step": 3870
2719
+ },
2720
+ {
2721
+ "epoch": 0.25321412256085624,
2722
+ "grad_norm": 5.706826041185719,
2723
+ "learning_rate": 2.57511296185952e-05,
2724
+ "loss": 0.6275,
2725
+ "step": 3880
2726
+ },
2727
+ {
2728
+ "epoch": 0.2538667362787966,
2729
+ "grad_norm": 7.487078662155924,
2730
+ "learning_rate": 2.572944311753687e-05,
2731
+ "loss": 0.707,
2732
+ "step": 3890
2733
+ },
2734
+ {
2735
+ "epoch": 0.2545193499967369,
2736
+ "grad_norm": 4.599310176375447,
2737
+ "learning_rate": 2.570771059475606e-05,
2738
+ "loss": 0.6573,
2739
+ "step": 3900
2740
+ },
2741
+ {
2742
+ "epoch": 0.25517196371467726,
2743
+ "grad_norm": 2.758393828851342,
2744
+ "learning_rate": 2.5685932143469927e-05,
2745
+ "loss": 0.6944,
2746
+ "step": 3910
2747
+ },
2748
+ {
2749
+ "epoch": 0.25582457743261766,
2750
+ "grad_norm": 21.68704478201106,
2751
+ "learning_rate": 2.566410785709263e-05,
2752
+ "loss": 0.6714,
2753
+ "step": 3920
2754
+ },
2755
+ {
2756
+ "epoch": 0.256477191150558,
2757
+ "grad_norm": 3.78818613516299,
2758
+ "learning_rate": 2.5642237829234913e-05,
2759
+ "loss": 0.7082,
2760
+ "step": 3930
2761
+ },
2762
+ {
2763
+ "epoch": 0.25712980486849835,
2764
+ "grad_norm": 5.879311136389752,
2765
+ "learning_rate": 2.562032215370373e-05,
2766
+ "loss": 0.676,
2767
+ "step": 3940
2768
+ },
2769
+ {
2770
+ "epoch": 0.2577824185864387,
2771
+ "grad_norm": 2.7847168991870905,
2772
+ "learning_rate": 2.559836092450183e-05,
2773
+ "loss": 0.6798,
2774
+ "step": 3950
2775
+ },
2776
+ {
2777
+ "epoch": 0.25843503230437903,
2778
+ "grad_norm": 4.112944354600252,
2779
+ "learning_rate": 2.5576354235827354e-05,
2780
+ "loss": 0.6865,
2781
+ "step": 3960
2782
+ },
2783
+ {
2784
+ "epoch": 0.2590876460223194,
2785
+ "grad_norm": 5.714785342853446,
2786
+ "learning_rate": 2.555430218207343e-05,
2787
+ "loss": 0.6798,
2788
+ "step": 3970
2789
+ },
2790
+ {
2791
+ "epoch": 0.2597402597402597,
2792
+ "grad_norm": 4.862160034847451,
2793
+ "learning_rate": 2.553220485782778e-05,
2794
+ "loss": 0.729,
2795
+ "step": 3980
2796
+ },
2797
+ {
2798
+ "epoch": 0.2603928734582001,
2799
+ "grad_norm": 3.1205186373681713,
2800
+ "learning_rate": 2.5510062357872285e-05,
2801
+ "loss": 0.7087,
2802
+ "step": 3990
2803
+ },
2804
+ {
2805
+ "epoch": 0.26104548717614046,
2806
+ "grad_norm": 7.094777843607683,
2807
+ "learning_rate": 2.5487874777182615e-05,
2808
+ "loss": 0.7291,
2809
+ "step": 4000
2810
+ },
2811
+ {
2812
+ "epoch": 0.2616981008940808,
2813
+ "grad_norm": 4.923924966818384,
2814
+ "learning_rate": 2.54656422109278e-05,
2815
+ "loss": 0.6984,
2816
+ "step": 4010
2817
+ },
2818
+ {
2819
+ "epoch": 0.26235071461202114,
2820
+ "grad_norm": 5.84865229806092,
2821
+ "learning_rate": 2.5443364754469823e-05,
2822
+ "loss": 0.6943,
2823
+ "step": 4020
2824
+ },
2825
+ {
2826
+ "epoch": 0.2630033283299615,
2827
+ "grad_norm": 5.789406461188536,
2828
+ "learning_rate": 2.5421042503363218e-05,
2829
+ "loss": 0.6773,
2830
+ "step": 4030
2831
+ },
2832
+ {
2833
+ "epoch": 0.2636559420479018,
2834
+ "grad_norm": 5.041801808124959,
2835
+ "learning_rate": 2.539867555335465e-05,
2836
+ "loss": 0.6933,
2837
+ "step": 4040
2838
+ },
2839
+ {
2840
+ "epoch": 0.2643085557658422,
2841
+ "grad_norm": 4.582258734296027,
2842
+ "learning_rate": 2.5376264000382525e-05,
2843
+ "loss": 0.6671,
2844
+ "step": 4050
2845
+ },
2846
+ {
2847
+ "epoch": 0.26496116948378257,
2848
+ "grad_norm": 3.5384290519868875,
2849
+ "learning_rate": 2.5353807940576542e-05,
2850
+ "loss": 0.657,
2851
+ "step": 4060
2852
+ },
2853
+ {
2854
+ "epoch": 0.2656137832017229,
2855
+ "grad_norm": 11.349344350556114,
2856
+ "learning_rate": 2.5331307470257322e-05,
2857
+ "loss": 0.7067,
2858
+ "step": 4070
2859
+ },
2860
+ {
2861
+ "epoch": 0.26626639691966325,
2862
+ "grad_norm": 3.768338440648807,
2863
+ "learning_rate": 2.530876268593597e-05,
2864
+ "loss": 0.6564,
2865
+ "step": 4080
2866
+ },
2867
+ {
2868
+ "epoch": 0.2669190106376036,
2869
+ "grad_norm": 6.106759762838668,
2870
+ "learning_rate": 2.5286173684313667e-05,
2871
+ "loss": 0.6767,
2872
+ "step": 4090
2873
+ },
2874
+ {
2875
+ "epoch": 0.26757162435554394,
2876
+ "grad_norm": 8.634680581251073,
2877
+ "learning_rate": 2.526354056228125e-05,
2878
+ "loss": 0.7171,
2879
+ "step": 4100
2880
+ },
2881
+ {
2882
+ "epoch": 0.2682242380734843,
2883
+ "grad_norm": 21.27548735763032,
2884
+ "learning_rate": 2.5240863416918805e-05,
2885
+ "loss": 0.6866,
2886
+ "step": 4110
2887
+ },
2888
+ {
2889
+ "epoch": 0.2688768517914247,
2890
+ "grad_norm": 4.472184788538698,
2891
+ "learning_rate": 2.5218142345495246e-05,
2892
+ "loss": 0.6467,
2893
+ "step": 4120
2894
+ },
2895
+ {
2896
+ "epoch": 0.269529465509365,
2897
+ "grad_norm": 363.8219860041446,
2898
+ "learning_rate": 2.5195377445467905e-05,
2899
+ "loss": 0.6524,
2900
+ "step": 4130
2901
+ },
2902
+ {
2903
+ "epoch": 0.27018207922730536,
2904
+ "grad_norm": 5.253740522188672,
2905
+ "learning_rate": 2.5172568814482094e-05,
2906
+ "loss": 0.6984,
2907
+ "step": 4140
2908
+ },
2909
+ {
2910
+ "epoch": 0.2708346929452457,
2911
+ "grad_norm": 2.880982518554529,
2912
+ "learning_rate": 2.514971655037072e-05,
2913
+ "loss": 0.6775,
2914
+ "step": 4150
2915
+ },
2916
+ {
2917
+ "epoch": 0.27148730666318605,
2918
+ "grad_norm": 3.842728021491472,
2919
+ "learning_rate": 2.5126820751153825e-05,
2920
+ "loss": 0.6392,
2921
+ "step": 4160
2922
+ },
2923
+ {
2924
+ "epoch": 0.2721399203811264,
2925
+ "grad_norm": 4.609029259080438,
2926
+ "learning_rate": 2.510388151503819e-05,
2927
+ "loss": 0.6674,
2928
+ "step": 4170
2929
+ },
2930
+ {
2931
+ "epoch": 0.2727925340990668,
2932
+ "grad_norm": 9.747845142610567,
2933
+ "learning_rate": 2.5080898940416927e-05,
2934
+ "loss": 0.6236,
2935
+ "step": 4180
2936
+ },
2937
+ {
2938
+ "epoch": 0.27344514781700713,
2939
+ "grad_norm": 2.9805241050929348,
2940
+ "learning_rate": 2.5057873125869017e-05,
2941
+ "loss": 0.6835,
2942
+ "step": 4190
2943
+ },
2944
+ {
2945
+ "epoch": 0.27409776153494747,
2946
+ "grad_norm": 106.07926539562291,
2947
+ "learning_rate": 2.5034804170158925e-05,
2948
+ "loss": 0.6394,
2949
+ "step": 4200
2950
+ },
2951
+ {
2952
+ "epoch": 0.2747503752528878,
2953
+ "grad_norm": 5.554717373667031,
2954
+ "learning_rate": 2.501169217223615e-05,
2955
+ "loss": 0.6558,
2956
+ "step": 4210
2957
+ },
2958
+ {
2959
+ "epoch": 0.27540298897082816,
2960
+ "grad_norm": 9.051439573328066,
2961
+ "learning_rate": 2.498853723123482e-05,
2962
+ "loss": 0.6682,
2963
+ "step": 4220
2964
+ },
2965
+ {
2966
+ "epoch": 0.2760556026887685,
2967
+ "grad_norm": 2.950104313961938,
2968
+ "learning_rate": 2.496533944647325e-05,
2969
+ "loss": 0.6912,
2970
+ "step": 4230
2971
+ },
2972
+ {
2973
+ "epoch": 0.2767082164067089,
2974
+ "grad_norm": 2.721831318519013,
2975
+ "learning_rate": 2.494209891745354e-05,
2976
+ "loss": 0.6344,
2977
+ "step": 4240
2978
+ },
2979
+ {
2980
+ "epoch": 0.27736083012464924,
2981
+ "grad_norm": 3.139038444339525,
2982
+ "learning_rate": 2.4918815743861113e-05,
2983
+ "loss": 0.6582,
2984
+ "step": 4250
2985
+ },
2986
+ {
2987
+ "epoch": 0.2780134438425896,
2988
+ "grad_norm": 34.47266488137286,
2989
+ "learning_rate": 2.4895490025564323e-05,
2990
+ "loss": 0.6491,
2991
+ "step": 4260
2992
+ },
2993
+ {
2994
+ "epoch": 0.2786660575605299,
2995
+ "grad_norm": 6.804982368395946,
2996
+ "learning_rate": 2.4872121862614e-05,
2997
+ "loss": 0.6766,
2998
+ "step": 4270
2999
+ },
3000
+ {
3001
+ "epoch": 0.27931867127847027,
3002
+ "grad_norm": 4.937357646966404,
3003
+ "learning_rate": 2.4848711355243038e-05,
3004
+ "loss": 0.6779,
3005
+ "step": 4280
3006
+ },
3007
+ {
3008
+ "epoch": 0.2799712849964106,
3009
+ "grad_norm": 3.22339790826578,
3010
+ "learning_rate": 2.4825258603865952e-05,
3011
+ "loss": 0.6732,
3012
+ "step": 4290
3013
+ },
3014
+ {
3015
+ "epoch": 0.28062389871435095,
3016
+ "grad_norm": 5.450160928852526,
3017
+ "learning_rate": 2.4801763709078466e-05,
3018
+ "loss": 0.6637,
3019
+ "step": 4300
3020
+ },
3021
+ {
3022
+ "epoch": 0.28127651243229135,
3023
+ "grad_norm": 4.818596483449563,
3024
+ "learning_rate": 2.4778226771657054e-05,
3025
+ "loss": 0.6325,
3026
+ "step": 4310
3027
+ },
3028
+ {
3029
+ "epoch": 0.2819291261502317,
3030
+ "grad_norm": 17.57607019240089,
3031
+ "learning_rate": 2.4754647892558536e-05,
3032
+ "loss": 0.6927,
3033
+ "step": 4320
3034
+ },
3035
+ {
3036
+ "epoch": 0.28258173986817203,
3037
+ "grad_norm": 6.082993937740036,
3038
+ "learning_rate": 2.4731027172919623e-05,
3039
+ "loss": 0.6717,
3040
+ "step": 4330
3041
+ },
3042
+ {
3043
+ "epoch": 0.2832343535861124,
3044
+ "grad_norm": 65.13799954231784,
3045
+ "learning_rate": 2.47073647140565e-05,
3046
+ "loss": 0.6354,
3047
+ "step": 4340
3048
+ },
3049
+ {
3050
+ "epoch": 0.2838869673040527,
3051
+ "grad_norm": 4.5660574643583125,
3052
+ "learning_rate": 2.468366061746438e-05,
3053
+ "loss": 0.6963,
3054
+ "step": 4350
3055
+ },
3056
+ {
3057
+ "epoch": 0.28453958102199306,
3058
+ "grad_norm": 2.282525842359472,
3059
+ "learning_rate": 2.4659914984817065e-05,
3060
+ "loss": 0.6632,
3061
+ "step": 4360
3062
+ },
3063
+ {
3064
+ "epoch": 0.28519219473993346,
3065
+ "grad_norm": 2.6517071641202814,
3066
+ "learning_rate": 2.4636127917966536e-05,
3067
+ "loss": 0.7145,
3068
+ "step": 4370
3069
+ },
3070
+ {
3071
+ "epoch": 0.2858448084578738,
3072
+ "grad_norm": 4.738045556857019,
3073
+ "learning_rate": 2.4612299518942476e-05,
3074
+ "loss": 0.7087,
3075
+ "step": 4380
3076
+ },
3077
+ {
3078
+ "epoch": 0.28649742217581414,
3079
+ "grad_norm": 5.169948622487004,
3080
+ "learning_rate": 2.4588429889951872e-05,
3081
+ "loss": 0.632,
3082
+ "step": 4390
3083
+ },
3084
+ {
3085
+ "epoch": 0.2871500358937545,
3086
+ "grad_norm": 2.386433835669107,
3087
+ "learning_rate": 2.4564519133378545e-05,
3088
+ "loss": 0.6696,
3089
+ "step": 4400
3090
+ },
3091
+ {
3092
+ "epoch": 0.2878026496116948,
3093
+ "grad_norm": 2.262021691782428,
3094
+ "learning_rate": 2.454056735178273e-05,
3095
+ "loss": 0.6918,
3096
+ "step": 4410
3097
+ },
3098
+ {
3099
+ "epoch": 0.28845526332963517,
3100
+ "grad_norm": 3.2213155651118286,
3101
+ "learning_rate": 2.4516574647900635e-05,
3102
+ "loss": 0.667,
3103
+ "step": 4420
3104
+ },
3105
+ {
3106
+ "epoch": 0.28910787704757557,
3107
+ "grad_norm": 6.9747348967457405,
3108
+ "learning_rate": 2.4492541124643987e-05,
3109
+ "loss": 0.6761,
3110
+ "step": 4430
3111
+ },
3112
+ {
3113
+ "epoch": 0.2897604907655159,
3114
+ "grad_norm": 6.9858902006653345,
3115
+ "learning_rate": 2.4468466885099602e-05,
3116
+ "loss": 0.6454,
3117
+ "step": 4440
3118
+ },
3119
+ {
3120
+ "epoch": 0.29041310448345625,
3121
+ "grad_norm": 2.834408013972733,
3122
+ "learning_rate": 2.444435203252894e-05,
3123
+ "loss": 0.6961,
3124
+ "step": 4450
3125
+ },
3126
+ {
3127
+ "epoch": 0.2910657182013966,
3128
+ "grad_norm": 2.770208579931205,
3129
+ "learning_rate": 2.4420196670367668e-05,
3130
+ "loss": 0.6895,
3131
+ "step": 4460
3132
+ },
3133
+ {
3134
+ "epoch": 0.29171833191933694,
3135
+ "grad_norm": 6.617102756430502,
3136
+ "learning_rate": 2.43960009022252e-05,
3137
+ "loss": 0.6772,
3138
+ "step": 4470
3139
+ },
3140
+ {
3141
+ "epoch": 0.2923709456372773,
3142
+ "grad_norm": 7.760094006549052,
3143
+ "learning_rate": 2.4371764831884272e-05,
3144
+ "loss": 0.6283,
3145
+ "step": 4480
3146
+ },
3147
+ {
3148
+ "epoch": 0.2930235593552176,
3149
+ "grad_norm": 3.207368003644612,
3150
+ "learning_rate": 2.4347488563300482e-05,
3151
+ "loss": 0.6547,
3152
+ "step": 4490
3153
+ },
3154
+ {
3155
+ "epoch": 0.293676173073158,
3156
+ "grad_norm": 4.982915873993841,
3157
+ "learning_rate": 2.432317220060186e-05,
3158
+ "loss": 0.6844,
3159
+ "step": 4500
3160
+ },
3161
+ {
3162
+ "epoch": 0.29432878679109836,
3163
+ "grad_norm": 4.769955128072813,
3164
+ "learning_rate": 2.429881584808839e-05,
3165
+ "loss": 0.6594,
3166
+ "step": 4510
3167
+ },
3168
+ {
3169
+ "epoch": 0.2949814005090387,
3170
+ "grad_norm": 15.559397928313343,
3171
+ "learning_rate": 2.427441961023161e-05,
3172
+ "loss": 0.6796,
3173
+ "step": 4520
3174
+ },
3175
+ {
3176
+ "epoch": 0.29563401422697905,
3177
+ "grad_norm": 1.8238291681792838,
3178
+ "learning_rate": 2.4249983591674123e-05,
3179
+ "loss": 0.6909,
3180
+ "step": 4530
3181
+ },
3182
+ {
3183
+ "epoch": 0.2962866279449194,
3184
+ "grad_norm": 6.342739682478503,
3185
+ "learning_rate": 2.4225507897229163e-05,
3186
+ "loss": 0.6159,
3187
+ "step": 4540
3188
+ },
3189
+ {
3190
+ "epoch": 0.29693924166285973,
3191
+ "grad_norm": 9.919227547257767,
3192
+ "learning_rate": 2.4200992631880154e-05,
3193
+ "loss": 0.6904,
3194
+ "step": 4550
3195
+ },
3196
+ {
3197
+ "epoch": 0.29759185538080013,
3198
+ "grad_norm": 3.7408822158426234,
3199
+ "learning_rate": 2.417643790078024e-05,
3200
+ "loss": 0.6687,
3201
+ "step": 4560
3202
+ },
3203
+ {
3204
+ "epoch": 0.2982444690987405,
3205
+ "grad_norm": 3.1384506669870293,
3206
+ "learning_rate": 2.4151843809251855e-05,
3207
+ "loss": 0.7191,
3208
+ "step": 4570
3209
+ },
3210
+ {
3211
+ "epoch": 0.2988970828166808,
3212
+ "grad_norm": 3.5015910483221684,
3213
+ "learning_rate": 2.4127210462786255e-05,
3214
+ "loss": 0.6586,
3215
+ "step": 4580
3216
+ },
3217
+ {
3218
+ "epoch": 0.29954969653462116,
3219
+ "grad_norm": 3.9707619680987936,
3220
+ "learning_rate": 2.410253796704307e-05,
3221
+ "loss": 0.6968,
3222
+ "step": 4590
3223
+ },
3224
+ {
3225
+ "epoch": 0.3002023102525615,
3226
+ "grad_norm": 4.706277494109596,
3227
+ "learning_rate": 2.4077826427849867e-05,
3228
+ "loss": 0.6933,
3229
+ "step": 4600
3230
+ },
3231
+ {
3232
+ "epoch": 0.30085492397050184,
3233
+ "grad_norm": 1.520537682976707,
3234
+ "learning_rate": 2.4053075951201666e-05,
3235
+ "loss": 0.6868,
3236
+ "step": 4610
3237
+ },
3238
+ {
3239
+ "epoch": 0.3015075376884422,
3240
+ "grad_norm": 2.5680418797343116,
3241
+ "learning_rate": 2.4028286643260507e-05,
3242
+ "loss": 0.6254,
3243
+ "step": 4620
3244
+ },
3245
+ {
3246
+ "epoch": 0.3021601514063826,
3247
+ "grad_norm": 5.251605560389514,
3248
+ "learning_rate": 2.4003458610354988e-05,
3249
+ "loss": 0.6993,
3250
+ "step": 4630
3251
+ },
3252
+ {
3253
+ "epoch": 0.3028127651243229,
3254
+ "grad_norm": 7.585261117342086,
3255
+ "learning_rate": 2.397859195897981e-05,
3256
+ "loss": 0.6427,
3257
+ "step": 4640
3258
+ },
3259
+ {
3260
+ "epoch": 0.30346537884226327,
3261
+ "grad_norm": 5.643680495196406,
3262
+ "learning_rate": 2.3953686795795324e-05,
3263
+ "loss": 0.6594,
3264
+ "step": 4650
3265
+ },
3266
+ {
3267
+ "epoch": 0.3041179925602036,
3268
+ "grad_norm": 8.250100337487616,
3269
+ "learning_rate": 2.3928743227627055e-05,
3270
+ "loss": 0.6693,
3271
+ "step": 4660
3272
+ },
3273
+ {
3274
+ "epoch": 0.30477060627814395,
3275
+ "grad_norm": 4.867583869481904,
3276
+ "learning_rate": 2.3903761361465286e-05,
3277
+ "loss": 0.6703,
3278
+ "step": 4670
3279
+ },
3280
+ {
3281
+ "epoch": 0.3054232199960843,
3282
+ "grad_norm": 8.954704318465929,
3283
+ "learning_rate": 2.3878741304464537e-05,
3284
+ "loss": 0.6714,
3285
+ "step": 4680
3286
+ },
3287
+ {
3288
+ "epoch": 0.3060758337140247,
3289
+ "grad_norm": 3.2721913590097427,
3290
+ "learning_rate": 2.385368316394317e-05,
3291
+ "loss": 0.6611,
3292
+ "step": 4690
3293
+ },
3294
+ {
3295
+ "epoch": 0.30672844743196503,
3296
+ "grad_norm": 4.795659908514144,
3297
+ "learning_rate": 2.382858704738288e-05,
3298
+ "loss": 0.6574,
3299
+ "step": 4700
3300
+ },
3301
+ {
3302
+ "epoch": 0.3073810611499054,
3303
+ "grad_norm": 6.665483115358767,
3304
+ "learning_rate": 2.3803453062428258e-05,
3305
+ "loss": 0.6953,
3306
+ "step": 4710
3307
+ },
3308
+ {
3309
+ "epoch": 0.3080336748678457,
3310
+ "grad_norm": 2.3307511028486454,
3311
+ "learning_rate": 2.377828131688632e-05,
3312
+ "loss": 0.701,
3313
+ "step": 4720
3314
+ },
3315
+ {
3316
+ "epoch": 0.30868628858578606,
3317
+ "grad_norm": 5.400233277827547,
3318
+ "learning_rate": 2.375307191872606e-05,
3319
+ "loss": 0.6575,
3320
+ "step": 4730
3321
+ },
3322
+ {
3323
+ "epoch": 0.3093389023037264,
3324
+ "grad_norm": 11.992545673600683,
3325
+ "learning_rate": 2.3727824976077948e-05,
3326
+ "loss": 0.649,
3327
+ "step": 4740
3328
+ },
3329
+ {
3330
+ "epoch": 0.3099915160216668,
3331
+ "grad_norm": 8.495543714235616,
3332
+ "learning_rate": 2.3702540597233534e-05,
3333
+ "loss": 0.6512,
3334
+ "step": 4750
3335
+ },
3336
+ {
3337
+ "epoch": 0.31064412973960714,
3338
+ "grad_norm": 4.70397191327332,
3339
+ "learning_rate": 2.3677218890644915e-05,
3340
+ "loss": 0.7181,
3341
+ "step": 4760
3342
+ },
3343
+ {
3344
+ "epoch": 0.3112967434575475,
3345
+ "grad_norm": 2.343276522812816,
3346
+ "learning_rate": 2.365185996492429e-05,
3347
+ "loss": 0.6674,
3348
+ "step": 4770
3349
+ },
3350
+ {
3351
+ "epoch": 0.31194935717548783,
3352
+ "grad_norm": 8.473831735394866,
3353
+ "learning_rate": 2.362646392884353e-05,
3354
+ "loss": 0.6315,
3355
+ "step": 4780
3356
+ },
3357
+ {
3358
+ "epoch": 0.31260197089342817,
3359
+ "grad_norm": 8.747856095472184,
3360
+ "learning_rate": 2.360103089133366e-05,
3361
+ "loss": 0.6515,
3362
+ "step": 4790
3363
+ },
3364
+ {
3365
+ "epoch": 0.3132545846113685,
3366
+ "grad_norm": 3.291537769224359,
3367
+ "learning_rate": 2.3575560961484424e-05,
3368
+ "loss": 0.6503,
3369
+ "step": 4800
3370
+ },
3371
+ {
3372
+ "epoch": 0.31390719832930886,
3373
+ "grad_norm": 6.039997299901094,
3374
+ "learning_rate": 2.3550054248543815e-05,
3375
+ "loss": 0.6745,
3376
+ "step": 4810
3377
+ },
3378
+ {
3379
+ "epoch": 0.31455981204724925,
3380
+ "grad_norm": 3.8499254690114926,
3381
+ "learning_rate": 2.352451086191758e-05,
3382
+ "loss": 0.6777,
3383
+ "step": 4820
3384
+ },
3385
+ {
3386
+ "epoch": 0.3152124257651896,
3387
+ "grad_norm": 4.716777667209856,
3388
+ "learning_rate": 2.3498930911168793e-05,
3389
+ "loss": 0.6176,
3390
+ "step": 4830
3391
+ },
3392
+ {
3393
+ "epoch": 0.31586503948312994,
3394
+ "grad_norm": 1.9400354838321467,
3395
+ "learning_rate": 2.3473314506017343e-05,
3396
+ "loss": 0.7005,
3397
+ "step": 4840
3398
+ },
3399
+ {
3400
+ "epoch": 0.3165176532010703,
3401
+ "grad_norm": 3.219880433320904,
3402
+ "learning_rate": 2.3447661756339496e-05,
3403
+ "loss": 0.7128,
3404
+ "step": 4850
3405
+ },
3406
+ {
3407
+ "epoch": 0.3171702669190106,
3408
+ "grad_norm": 2.8512997858968068,
3409
+ "learning_rate": 2.34219727721674e-05,
3410
+ "loss": 0.6683,
3411
+ "step": 4860
3412
+ },
3413
+ {
3414
+ "epoch": 0.31782288063695097,
3415
+ "grad_norm": 19.226311711082776,
3416
+ "learning_rate": 2.3396247663688627e-05,
3417
+ "loss": 0.6853,
3418
+ "step": 4870
3419
+ },
3420
+ {
3421
+ "epoch": 0.31847549435489136,
3422
+ "grad_norm": 4.223645344092681,
3423
+ "learning_rate": 2.3370486541245703e-05,
3424
+ "loss": 0.6904,
3425
+ "step": 4880
3426
+ },
3427
+ {
3428
+ "epoch": 0.3191281080728317,
3429
+ "grad_norm": 5.234619317117684,
3430
+ "learning_rate": 2.334468951533562e-05,
3431
+ "loss": 0.6708,
3432
+ "step": 4890
3433
+ },
3434
+ {
3435
+ "epoch": 0.31978072179077205,
3436
+ "grad_norm": 2.1429171576497215,
3437
+ "learning_rate": 2.3318856696609384e-05,
3438
+ "loss": 0.6734,
3439
+ "step": 4900
3440
+ },
3441
+ {
3442
+ "epoch": 0.3204333355087124,
3443
+ "grad_norm": 3.508871143887552,
3444
+ "learning_rate": 2.3292988195871503e-05,
3445
+ "loss": 0.6806,
3446
+ "step": 4910
3447
+ },
3448
+ {
3449
+ "epoch": 0.32108594922665273,
3450
+ "grad_norm": 12.968809417220816,
3451
+ "learning_rate": 2.3267084124079555e-05,
3452
+ "loss": 0.6633,
3453
+ "step": 4920
3454
+ },
3455
+ {
3456
+ "epoch": 0.3217385629445931,
3457
+ "grad_norm": 4.101668757924199,
3458
+ "learning_rate": 2.3241144592343686e-05,
3459
+ "loss": 0.6585,
3460
+ "step": 4930
3461
+ },
3462
+ {
3463
+ "epoch": 0.3223911766625335,
3464
+ "grad_norm": 4.363073823894001,
3465
+ "learning_rate": 2.3215169711926147e-05,
3466
+ "loss": 0.6538,
3467
+ "step": 4940
3468
+ },
3469
+ {
3470
+ "epoch": 0.3230437903804738,
3471
+ "grad_norm": 12.245523685894241,
3472
+ "learning_rate": 2.31891595942408e-05,
3473
+ "loss": 0.6637,
3474
+ "step": 4950
3475
+ },
3476
+ {
3477
+ "epoch": 0.32369640409841416,
3478
+ "grad_norm": 5.435880397881584,
3479
+ "learning_rate": 2.3163114350852648e-05,
3480
+ "loss": 0.6633,
3481
+ "step": 4960
3482
+ },
3483
+ {
3484
+ "epoch": 0.3243490178163545,
3485
+ "grad_norm": 8.129148392597296,
3486
+ "learning_rate": 2.3137034093477376e-05,
3487
+ "loss": 0.7278,
3488
+ "step": 4970
3489
+ },
3490
+ {
3491
+ "epoch": 0.32500163153429484,
3492
+ "grad_norm": 4.359321402490296,
3493
+ "learning_rate": 2.3110918933980834e-05,
3494
+ "loss": 0.7478,
3495
+ "step": 4980
3496
+ },
3497
+ {
3498
+ "epoch": 0.3256542452522352,
3499
+ "grad_norm": 6.075218466766879,
3500
+ "learning_rate": 2.3084768984378586e-05,
3501
+ "loss": 0.6677,
3502
+ "step": 4990
3503
+ },
3504
+ {
3505
+ "epoch": 0.32630685897017553,
3506
+ "grad_norm": 2.9896494008560706,
3507
+ "learning_rate": 2.3058584356835427e-05,
3508
+ "loss": 0.6513,
3509
+ "step": 5000
3510
+ },
3511
+ {
3512
+ "epoch": 0.3269594726881159,
3513
+ "grad_norm": 1.4754266962232805,
3514
+ "learning_rate": 2.3032365163664883e-05,
3515
+ "loss": 0.6464,
3516
+ "step": 5010
3517
+ },
3518
+ {
3519
+ "epoch": 0.32761208640605627,
3520
+ "grad_norm": 3.0595670396268004,
3521
+ "learning_rate": 2.3006111517328757e-05,
3522
+ "loss": 0.6421,
3523
+ "step": 5020
3524
+ },
3525
+ {
3526
+ "epoch": 0.3282647001239966,
3527
+ "grad_norm": 2.5999764771497795,
3528
+ "learning_rate": 2.2979823530436612e-05,
3529
+ "loss": 0.7156,
3530
+ "step": 5030
3531
+ },
3532
+ {
3533
+ "epoch": 0.32891731384193695,
3534
+ "grad_norm": 4.010936330179149,
3535
+ "learning_rate": 2.2953501315745333e-05,
3536
+ "loss": 0.7146,
3537
+ "step": 5040
3538
+ },
3539
+ {
3540
+ "epoch": 0.3295699275598773,
3541
+ "grad_norm": 3.6987082623611443,
3542
+ "learning_rate": 2.2927144986158597e-05,
3543
+ "loss": 0.6457,
3544
+ "step": 5050
3545
+ },
3546
+ {
3547
+ "epoch": 0.33022254127781764,
3548
+ "grad_norm": 2.904767386336742,
3549
+ "learning_rate": 2.2900754654726412e-05,
3550
+ "loss": 0.6609,
3551
+ "step": 5060
3552
+ },
3553
+ {
3554
+ "epoch": 0.33087515499575804,
3555
+ "grad_norm": 5.91499319274459,
3556
+ "learning_rate": 2.2874330434644644e-05,
3557
+ "loss": 0.6455,
3558
+ "step": 5070
3559
+ },
3560
+ {
3561
+ "epoch": 0.3315277687136984,
3562
+ "grad_norm": 4.274881122564761,
3563
+ "learning_rate": 2.284787243925451e-05,
3564
+ "loss": 0.6086,
3565
+ "step": 5080
3566
+ },
3567
+ {
3568
+ "epoch": 0.3321803824316387,
3569
+ "grad_norm": 4.586045428018205,
3570
+ "learning_rate": 2.2821380782042088e-05,
3571
+ "loss": 0.6295,
3572
+ "step": 5090
3573
+ },
3574
+ {
3575
+ "epoch": 0.33283299614957906,
3576
+ "grad_norm": 6.21240217104972,
3577
+ "learning_rate": 2.279485557663786e-05,
3578
+ "loss": 0.651,
3579
+ "step": 5100
3580
+ },
3581
+ {
3582
+ "epoch": 0.3334856098675194,
3583
+ "grad_norm": 7.236323907724817,
3584
+ "learning_rate": 2.276829693681619e-05,
3585
+ "loss": 0.6892,
3586
+ "step": 5110
3587
+ },
3588
+ {
3589
+ "epoch": 0.33413822358545975,
3590
+ "grad_norm": 3.238196874607574,
3591
+ "learning_rate": 2.2741704976494863e-05,
3592
+ "loss": 0.6669,
3593
+ "step": 5120
3594
+ },
3595
+ {
3596
+ "epoch": 0.3347908373034001,
3597
+ "grad_norm": 3.477662878877292,
3598
+ "learning_rate": 2.2715079809734578e-05,
3599
+ "loss": 0.6244,
3600
+ "step": 5130
3601
+ },
3602
+ {
3603
+ "epoch": 0.3354434510213405,
3604
+ "grad_norm": 3.320324994232007,
3605
+ "learning_rate": 2.2688421550738473e-05,
3606
+ "loss": 0.6908,
3607
+ "step": 5140
3608
+ },
3609
+ {
3610
+ "epoch": 0.33609606473928083,
3611
+ "grad_norm": 4.370531906823192,
3612
+ "learning_rate": 2.2661730313851622e-05,
3613
+ "loss": 0.6874,
3614
+ "step": 5150
3615
+ },
3616
+ {
3617
+ "epoch": 0.3367486784572212,
3618
+ "grad_norm": 7.874452844412553,
3619
+ "learning_rate": 2.2635006213560556e-05,
3620
+ "loss": 0.6677,
3621
+ "step": 5160
3622
+ },
3623
+ {
3624
+ "epoch": 0.3374012921751615,
3625
+ "grad_norm": 11.683763528940291,
3626
+ "learning_rate": 2.2608249364492764e-05,
3627
+ "loss": 0.6705,
3628
+ "step": 5170
3629
+ },
3630
+ {
3631
+ "epoch": 0.33805390589310186,
3632
+ "grad_norm": 3.023259120676624,
3633
+ "learning_rate": 2.2581459881416205e-05,
3634
+ "loss": 0.6199,
3635
+ "step": 5180
3636
+ },
3637
+ {
3638
+ "epoch": 0.3387065196110422,
3639
+ "grad_norm": 8.323397957099377,
3640
+ "learning_rate": 2.255463787923881e-05,
3641
+ "loss": 0.6681,
3642
+ "step": 5190
3643
+ },
3644
+ {
3645
+ "epoch": 0.3393591333289826,
3646
+ "grad_norm": 34.47067119815863,
3647
+ "learning_rate": 2.2527783473008e-05,
3648
+ "loss": 0.6697,
3649
+ "step": 5200
3650
+ }
3651
+ ],
3652
+ "logging_steps": 10,
3653
+ "max_steps": 15323,
3654
+ "num_input_tokens_seen": 0,
3655
+ "num_train_epochs": 1,
3656
+ "save_steps": 400,
3657
+ "stateful_callbacks": {
3658
+ "TrainerControl": {
3659
+ "args": {
3660
+ "should_epoch_stop": false,
3661
+ "should_evaluate": false,
3662
+ "should_log": false,
3663
+ "should_save": true,
3664
+ "should_training_stop": false
3665
+ },
3666
+ "attributes": {}
3667
+ }
3668
+ },
3669
+ "total_flos": 1.4214567069273293e+19,
3670
+ "train_batch_size": 8,
3671
+ "trial_name": null,
3672
+ "trial_params": null
3673
+ }
checkpoint-5200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3a6a5052a9445cc570063f5939fdeea3ff8007e9c2718674bb335b9eea0bfff
3
+ size 6520
checkpoint-5200/zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
checkpoint-5600/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Qwen/Qwen-VL-Chat
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.10.0
checkpoint-5600/adapter_config.json ADDED
@@ -0,0 +1,380 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Qwen/Qwen-VL-Chat",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layer_replication": null,
10
+ "layers_pattern": null,
11
+ "layers_to_transform": null,
12
+ "loftq_config": {},
13
+ "lora_alpha": 16,
14
+ "lora_dropout": 0.05,
15
+ "megatron_config": null,
16
+ "megatron_core": "megatron.core",
17
+ "modules_to_save": null,
18
+ "peft_type": "LORA",
19
+ "r": 64,
20
+ "rank_pattern": {},
21
+ "revision": null,
22
+ "target_modules": [
23
+ "transformer.h.16.mlp.w1",
24
+ "transformer.visual.transformer.resblocks.13.attn.out_proj",
25
+ "transformer.h.28.mlp.w1",
26
+ "transformer.h.16.attn.c_attn",
27
+ "transformer.h.3.mlp.w1",
28
+ "transformer.visual.transformer.resblocks.29.attn.in_proj",
29
+ "transformer.visual.transformer.resblocks.19.mlp.c_proj",
30
+ "transformer.visual.transformer.resblocks.47.mlp.c_fc",
31
+ "transformer.visual.transformer.resblocks.34.mlp.c_fc",
32
+ "transformer.visual.transformer.resblocks.4.attn.out_proj",
33
+ "transformer.h.31.attn.c_attn",
34
+ "transformer.h.16.mlp.w2",
35
+ "transformer.visual.transformer.resblocks.5.attn.out_proj",
36
+ "transformer.h.2.mlp.w1",
37
+ "transformer.visual.transformer.resblocks.7.attn.in_proj",
38
+ "transformer.h.20.mlp.w2",
39
+ "transformer.h.19.mlp.w1",
40
+ "transformer.visual.transformer.resblocks.18.mlp.c_fc",
41
+ "transformer.visual.transformer.resblocks.27.attn.out_proj",
42
+ "transformer.visual.transformer.resblocks.10.mlp.c_proj",
43
+ "transformer.visual.transformer.resblocks.43.mlp.c_fc",
44
+ "transformer.h.5.mlp.w1",
45
+ "transformer.visual.transformer.resblocks.15.mlp.c_proj",
46
+ "transformer.visual.transformer.resblocks.25.mlp.c_proj",
47
+ "transformer.visual.transformer.resblocks.10.attn.out_proj",
48
+ "transformer.visual.transformer.resblocks.4.mlp.c_fc",
49
+ "transformer.h.31.mlp.w2",
50
+ "transformer.visual.transformer.resblocks.37.attn.out_proj",
51
+ "transformer.h.8.attn.c_proj",
52
+ "transformer.h.29.attn.c_attn",
53
+ "transformer.visual.transformer.resblocks.24.mlp.c_proj",
54
+ "transformer.h.19.mlp.c_proj",
55
+ "transformer.visual.transformer.resblocks.11.attn.out_proj",
56
+ "transformer.h.13.mlp.c_proj",
57
+ "transformer.h.27.mlp.c_proj",
58
+ "transformer.h.31.mlp.w1",
59
+ "transformer.visual.transformer.resblocks.7.mlp.c_proj",
60
+ "transformer.h.28.mlp.w2",
61
+ "transformer.visual.transformer.resblocks.3.mlp.c_proj",
62
+ "transformer.visual.transformer.resblocks.13.attn.in_proj",
63
+ "transformer.h.21.attn.c_attn",
64
+ "transformer.visual.transformer.resblocks.23.mlp.c_fc",
65
+ "transformer.visual.transformer.resblocks.33.mlp.c_proj",
66
+ "transformer.visual.transformer.resblocks.42.mlp.c_fc",
67
+ "transformer.visual.transformer.resblocks.3.attn.in_proj",
68
+ "transformer.h.13.mlp.w1",
69
+ "transformer.visual.transformer.resblocks.22.attn.out_proj",
70
+ "transformer.visual.transformer.resblocks.20.mlp.c_fc",
71
+ "transformer.h.26.mlp.w2",
72
+ "transformer.h.14.attn.c_attn",
73
+ "transformer.h.16.attn.c_proj",
74
+ "transformer.h.1.mlp.w1",
75
+ "transformer.visual.transformer.resblocks.21.attn.out_proj",
76
+ "transformer.visual.transformer.resblocks.39.mlp.c_proj",
77
+ "transformer.visual.transformer.resblocks.4.attn.in_proj",
78
+ "transformer.h.29.mlp.c_proj",
79
+ "transformer.visual.transformer.resblocks.12.mlp.c_proj",
80
+ "transformer.visual.transformer.resblocks.14.attn.in_proj",
81
+ "transformer.h.28.attn.c_proj",
82
+ "transformer.h.18.mlp.w1",
83
+ "transformer.h.27.mlp.w2",
84
+ "transformer.h.18.attn.c_attn",
85
+ "transformer.visual.transformer.resblocks.33.attn.out_proj",
86
+ "transformer.h.5.mlp.w2",
87
+ "transformer.visual.transformer.resblocks.37.mlp.c_fc",
88
+ "transformer.visual.transformer.resblocks.2.mlp.c_proj",
89
+ "transformer.visual.transformer.resblocks.42.attn.out_proj",
90
+ "transformer.visual.transformer.resblocks.15.attn.in_proj",
91
+ "transformer.visual.transformer.resblocks.6.mlp.c_fc",
92
+ "transformer.h.13.mlp.w2",
93
+ "transformer.h.23.attn.c_proj",
94
+ "transformer.h.20.mlp.c_proj",
95
+ "transformer.h.14.mlp.w2",
96
+ "transformer.visual.transformer.resblocks.9.attn.in_proj",
97
+ "transformer.visual.transformer.resblocks.46.attn.in_proj",
98
+ "transformer.h.9.attn.c_attn",
99
+ "transformer.visual.transformer.resblocks.36.mlp.c_proj",
100
+ "transformer.h.31.attn.c_proj",
101
+ "transformer.visual.transformer.resblocks.19.mlp.c_fc",
102
+ "transformer.h.17.mlp.w1",
103
+ "transformer.h.2.attn.c_proj",
104
+ "transformer.visual.transformer.resblocks.47.attn.in_proj",
105
+ "transformer.visual.transformer.resblocks.45.mlp.c_proj",
106
+ "transformer.visual.transformer.resblocks.46.mlp.c_fc",
107
+ "transformer.visual.transformer.resblocks.27.attn.in_proj",
108
+ "transformer.visual.transformer.resblocks.26.attn.out_proj",
109
+ "transformer.h.22.attn.c_proj",
110
+ "transformer.visual.transformer.resblocks.40.attn.out_proj",
111
+ "transformer.visual.transformer.resblocks.46.mlp.c_proj",
112
+ "transformer.visual.transformer.resblocks.18.attn.out_proj",
113
+ "transformer.h.27.attn.c_proj",
114
+ "transformer.visual.transformer.resblocks.26.attn.in_proj",
115
+ "transformer.h.4.mlp.w1",
116
+ "transformer.h.10.attn.c_proj",
117
+ "transformer.h.6.attn.c_attn",
118
+ "transformer.h.2.attn.c_attn",
119
+ "transformer.h.22.mlp.w1",
120
+ "transformer.visual.transformer.resblocks.39.mlp.c_fc",
121
+ "transformer.h.8.mlp.w2",
122
+ "transformer.h.4.attn.c_attn",
123
+ "transformer.h.26.mlp.c_proj",
124
+ "transformer.visual.transformer.resblocks.29.mlp.c_proj",
125
+ "transformer.visual.transformer.resblocks.5.mlp.c_proj",
126
+ "transformer.h.11.mlp.c_proj",
127
+ "transformer.h.0.mlp.w2",
128
+ "transformer.visual.transformer.resblocks.36.attn.out_proj",
129
+ "transformer.h.29.mlp.w1",
130
+ "transformer.h.12.mlp.c_proj",
131
+ "transformer.visual.transformer.resblocks.2.attn.in_proj",
132
+ "transformer.visual.transformer.resblocks.2.mlp.c_fc",
133
+ "transformer.h.25.attn.c_attn",
134
+ "transformer.visual.transformer.resblocks.19.attn.in_proj",
135
+ "transformer.visual.transformer.resblocks.43.attn.out_proj",
136
+ "transformer.visual.transformer.resblocks.35.attn.out_proj",
137
+ "transformer.h.22.attn.c_attn",
138
+ "transformer.h.0.mlp.w1",
139
+ "transformer.h.3.attn.c_attn",
140
+ "transformer.h.28.attn.c_attn",
141
+ "transformer.visual.transformer.resblocks.25.attn.in_proj",
142
+ "transformer.visual.transformer.resblocks.34.attn.out_proj",
143
+ "transformer.h.21.attn.c_proj",
144
+ "transformer.h.6.attn.c_proj",
145
+ "transformer.visual.transformer.resblocks.11.mlp.c_proj",
146
+ "transformer.h.13.attn.c_attn",
147
+ "transformer.visual.transformer.resblocks.38.attn.out_proj",
148
+ "transformer.h.3.attn.c_proj",
149
+ "transformer.visual.transformer.resblocks.17.mlp.c_fc",
150
+ "transformer.h.26.mlp.w1",
151
+ "transformer.visual.transformer.resblocks.36.mlp.c_fc",
152
+ "transformer.h.26.attn.c_attn",
153
+ "transformer.visual.transformer.resblocks.29.attn.out_proj",
154
+ "transformer.h.7.mlp.w1",
155
+ "transformer.visual.transformer.resblocks.40.mlp.c_fc",
156
+ "transformer.visual.transformer.resblocks.9.attn.out_proj",
157
+ "transformer.h.3.mlp.c_proj",
158
+ "transformer.visual.transformer.resblocks.26.mlp.c_fc",
159
+ "transformer.h.11.mlp.w2",
160
+ "transformer.visual.transformer.resblocks.33.attn.in_proj",
161
+ "transformer.visual.transformer.resblocks.42.mlp.c_proj",
162
+ "transformer.visual.transformer.resblocks.32.attn.out_proj",
163
+ "transformer.h.4.attn.c_proj",
164
+ "transformer.visual.transformer.resblocks.27.mlp.c_fc",
165
+ "transformer.visual.transformer.resblocks.11.mlp.c_fc",
166
+ "transformer.visual.transformer.resblocks.25.attn.out_proj",
167
+ "transformer.visual.transformer.resblocks.23.attn.in_proj",
168
+ "transformer.h.5.attn.c_attn",
169
+ "transformer.h.16.mlp.c_proj",
170
+ "transformer.visual.transformer.resblocks.14.mlp.c_proj",
171
+ "transformer.h.22.mlp.w2",
172
+ "transformer.h.25.mlp.c_proj",
173
+ "transformer.visual.transformer.resblocks.10.mlp.c_fc",
174
+ "transformer.h.24.mlp.c_proj",
175
+ "transformer.h.19.mlp.w2",
176
+ "transformer.h.14.mlp.w1",
177
+ "transformer.visual.transformer.resblocks.40.mlp.c_proj",
178
+ "transformer.visual.transformer.resblocks.28.attn.out_proj",
179
+ "transformer.visual.transformer.resblocks.24.mlp.c_fc",
180
+ "transformer.h.8.attn.c_attn",
181
+ "transformer.h.9.mlp.w1",
182
+ "transformer.h.6.mlp.c_proj",
183
+ "transformer.visual.transformer.resblocks.19.attn.out_proj",
184
+ "transformer.visual.transformer.resblocks.32.mlp.c_fc",
185
+ "transformer.visual.transformer.resblocks.7.mlp.c_fc",
186
+ "transformer.visual.transformer.resblocks.44.attn.in_proj",
187
+ "transformer.visual.transformer.resblocks.34.mlp.c_proj",
188
+ "transformer.visual.transformer.resblocks.9.mlp.c_fc",
189
+ "transformer.visual.conv1",
190
+ "transformer.visual.transformer.resblocks.8.attn.out_proj",
191
+ "transformer.h.23.mlp.w2",
192
+ "transformer.h.7.mlp.w2",
193
+ "transformer.h.24.attn.c_proj",
194
+ "transformer.h.30.attn.c_proj",
195
+ "transformer.h.29.attn.c_proj",
196
+ "transformer.visual.transformer.resblocks.9.mlp.c_proj",
197
+ "transformer.visual.transformer.resblocks.35.attn.in_proj",
198
+ "transformer.visual.transformer.resblocks.21.mlp.c_fc",
199
+ "transformer.visual.transformer.resblocks.41.mlp.c_proj",
200
+ "transformer.visual.transformer.resblocks.38.mlp.c_fc",
201
+ "transformer.visual.transformer.resblocks.13.mlp.c_proj",
202
+ "transformer.visual.transformer.resblocks.41.attn.out_proj",
203
+ "transformer.visual.transformer.resblocks.16.mlp.c_fc",
204
+ "transformer.visual.transformer.resblocks.45.attn.out_proj",
205
+ "transformer.h.11.mlp.w1",
206
+ "transformer.visual.transformer.resblocks.16.attn.in_proj",
207
+ "transformer.visual.transformer.resblocks.47.attn.out_proj",
208
+ "transformer.h.9.attn.c_proj",
209
+ "transformer.h.31.mlp.c_proj",
210
+ "transformer.visual.transformer.resblocks.12.attn.in_proj",
211
+ "transformer.visual.transformer.resblocks.28.mlp.c_proj",
212
+ "transformer.visual.transformer.resblocks.20.attn.out_proj",
213
+ "transformer.h.12.attn.c_attn",
214
+ "transformer.h.24.mlp.w1",
215
+ "transformer.visual.transformer.resblocks.21.attn.in_proj",
216
+ "transformer.visual.transformer.resblocks.41.attn.in_proj",
217
+ "transformer.h.10.mlp.w1",
218
+ "transformer.h.1.mlp.w2",
219
+ "transformer.h.0.mlp.c_proj",
220
+ "transformer.h.22.mlp.c_proj",
221
+ "transformer.visual.transformer.resblocks.18.attn.in_proj",
222
+ "transformer.visual.transformer.resblocks.38.mlp.c_proj",
223
+ "transformer.h.12.mlp.w1",
224
+ "transformer.h.1.attn.c_attn",
225
+ "transformer.visual.transformer.resblocks.31.mlp.c_proj",
226
+ "transformer.visual.transformer.resblocks.44.mlp.c_proj",
227
+ "transformer.h.15.mlp.c_proj",
228
+ "transformer.h.6.mlp.w1",
229
+ "transformer.visual.transformer.resblocks.16.mlp.c_proj",
230
+ "transformer.h.13.attn.c_proj",
231
+ "transformer.h.15.attn.c_attn",
232
+ "transformer.h.15.mlp.w1",
233
+ "transformer.h.17.mlp.w2",
234
+ "transformer.visual.transformer.resblocks.10.attn.in_proj",
235
+ "transformer.h.26.attn.c_proj",
236
+ "transformer.visual.transformer.resblocks.20.attn.in_proj",
237
+ "transformer.h.10.mlp.w2",
238
+ "transformer.h.24.attn.c_attn",
239
+ "transformer.h.8.mlp.w1",
240
+ "transformer.h.23.mlp.w1",
241
+ "transformer.visual.transformer.resblocks.1.mlp.c_proj",
242
+ "transformer.h.4.mlp.w2",
243
+ "transformer.visual.transformer.resblocks.38.attn.in_proj",
244
+ "transformer.h.12.mlp.w2",
245
+ "transformer.h.7.attn.c_proj",
246
+ "transformer.h.4.mlp.c_proj",
247
+ "transformer.visual.transformer.resblocks.31.attn.out_proj",
248
+ "transformer.visual.transformer.resblocks.17.mlp.c_proj",
249
+ "transformer.h.21.mlp.w2",
250
+ "transformer.visual.transformer.resblocks.5.attn.in_proj",
251
+ "transformer.h.18.attn.c_proj",
252
+ "transformer.visual.transformer.resblocks.31.mlp.c_fc",
253
+ "transformer.h.18.mlp.w2",
254
+ "transformer.visual.transformer.resblocks.6.attn.out_proj",
255
+ "transformer.visual.transformer.resblocks.8.attn.in_proj",
256
+ "transformer.visual.transformer.resblocks.30.mlp.c_proj",
257
+ "transformer.h.30.mlp.c_proj",
258
+ "transformer.visual.transformer.resblocks.30.attn.out_proj",
259
+ "transformer.visual.transformer.resblocks.16.attn.out_proj",
260
+ "transformer.visual.transformer.resblocks.14.attn.out_proj",
261
+ "transformer.h.25.mlp.w1",
262
+ "transformer.visual.transformer.resblocks.45.attn.in_proj",
263
+ "transformer.h.11.attn.c_proj",
264
+ "transformer.visual.transformer.resblocks.30.attn.in_proj",
265
+ "transformer.visual.transformer.resblocks.43.mlp.c_proj",
266
+ "transformer.h.10.mlp.c_proj",
267
+ "transformer.h.21.mlp.c_proj",
268
+ "transformer.visual.transformer.resblocks.43.attn.in_proj",
269
+ "transformer.visual.transformer.resblocks.3.mlp.c_fc",
270
+ "transformer.visual.transformer.resblocks.44.attn.out_proj",
271
+ "transformer.h.23.attn.c_attn",
272
+ "transformer.visual.transformer.resblocks.22.attn.in_proj",
273
+ "transformer.visual.transformer.resblocks.6.attn.in_proj",
274
+ "transformer.visual.transformer.resblocks.44.mlp.c_fc",
275
+ "transformer.h.17.attn.c_attn",
276
+ "transformer.h.7.attn.c_attn",
277
+ "transformer.visual.transformer.resblocks.42.attn.in_proj",
278
+ "transformer.visual.transformer.resblocks.20.mlp.c_proj",
279
+ "transformer.h.8.mlp.c_proj",
280
+ "transformer.visual.transformer.resblocks.17.attn.out_proj",
281
+ "transformer.h.14.attn.c_proj",
282
+ "transformer.visual.transformer.resblocks.40.attn.in_proj",
283
+ "transformer.h.25.attn.c_proj",
284
+ "transformer.h.28.mlp.c_proj",
285
+ "transformer.visual.transformer.resblocks.35.mlp.c_proj",
286
+ "transformer.visual.transformer.resblocks.36.attn.in_proj",
287
+ "transformer.visual.transformer.resblocks.41.mlp.c_fc",
288
+ "transformer.visual.transformer.resblocks.14.mlp.c_fc",
289
+ "transformer.h.30.mlp.w2",
290
+ "transformer.h.20.mlp.w1",
291
+ "transformer.visual.transformer.resblocks.33.mlp.c_fc",
292
+ "transformer.h.29.mlp.w2",
293
+ "transformer.visual.transformer.resblocks.47.mlp.c_proj",
294
+ "transformer.visual.transformer.resblocks.30.mlp.c_fc",
295
+ "transformer.h.10.attn.c_attn",
296
+ "transformer.visual.transformer.resblocks.1.attn.in_proj",
297
+ "transformer.h.1.attn.c_proj",
298
+ "transformer.visual.transformer.resblocks.8.mlp.c_proj",
299
+ "transformer.h.19.attn.c_proj",
300
+ "transformer.visual.transformer.resblocks.37.attn.in_proj",
301
+ "transformer.h.15.attn.c_proj",
302
+ "transformer.h.5.attn.c_proj",
303
+ "transformer.visual.transformer.resblocks.32.mlp.c_proj",
304
+ "transformer.visual.transformer.resblocks.3.attn.out_proj",
305
+ "transformer.visual.transformer.resblocks.32.attn.in_proj",
306
+ "transformer.h.21.mlp.w1",
307
+ "transformer.h.23.mlp.c_proj",
308
+ "transformer.h.30.mlp.w1",
309
+ "transformer.h.0.attn.c_attn",
310
+ "transformer.visual.transformer.resblocks.24.attn.out_proj",
311
+ "transformer.visual.transformer.resblocks.31.attn.in_proj",
312
+ "transformer.h.18.mlp.c_proj",
313
+ "transformer.visual.transformer.resblocks.25.mlp.c_fc",
314
+ "transformer.visual.transformer.resblocks.22.mlp.c_fc",
315
+ "transformer.h.30.attn.c_attn",
316
+ "transformer.visual.transformer.resblocks.13.mlp.c_fc",
317
+ "transformer.h.17.mlp.c_proj",
318
+ "transformer.visual.transformer.resblocks.24.attn.in_proj",
319
+ "transformer.h.11.attn.c_attn",
320
+ "transformer.h.2.mlp.w2",
321
+ "transformer.visual.transformer.resblocks.8.mlp.c_fc",
322
+ "transformer.visual.transformer.resblocks.0.mlp.c_fc",
323
+ "transformer.visual.transformer.resblocks.2.attn.out_proj",
324
+ "transformer.visual.transformer.resblocks.35.mlp.c_fc",
325
+ "transformer.visual.transformer.resblocks.39.attn.out_proj",
326
+ "transformer.h.12.attn.c_proj",
327
+ "transformer.visual.transformer.resblocks.28.attn.in_proj",
328
+ "transformer.visual.transformer.resblocks.29.mlp.c_fc",
329
+ "transformer.visual.transformer.resblocks.0.attn.out_proj",
330
+ "transformer.visual.transformer.resblocks.23.mlp.c_proj",
331
+ "transformer.h.20.attn.c_attn",
332
+ "transformer.visual.transformer.resblocks.7.attn.out_proj",
333
+ "transformer.visual.transformer.resblocks.15.attn.out_proj",
334
+ "transformer.h.7.mlp.c_proj",
335
+ "transformer.visual.transformer.resblocks.1.attn.out_proj",
336
+ "transformer.h.3.mlp.w2",
337
+ "transformer.h.9.mlp.w2",
338
+ "transformer.visual.transformer.resblocks.34.attn.in_proj",
339
+ "transformer.h.27.attn.c_attn",
340
+ "transformer.visual.transformer.resblocks.12.mlp.c_fc",
341
+ "transformer.h.6.mlp.w2",
342
+ "transformer.visual.transformer.resblocks.39.attn.in_proj",
343
+ "transformer.h.15.mlp.w2",
344
+ "transformer.visual.transformer.resblocks.18.mlp.c_proj",
345
+ "transformer.h.0.attn.c_proj",
346
+ "transformer.h.19.attn.c_attn",
347
+ "transformer.visual.transformer.resblocks.27.mlp.c_proj",
348
+ "transformer.visual.transformer.resblocks.23.attn.out_proj",
349
+ "transformer.h.14.mlp.c_proj",
350
+ "transformer.h.9.mlp.c_proj",
351
+ "transformer.visual.transformer.resblocks.12.attn.out_proj",
352
+ "transformer.visual.transformer.resblocks.0.mlp.c_proj",
353
+ "transformer.visual.transformer.resblocks.5.mlp.c_fc",
354
+ "transformer.visual.transformer.resblocks.28.mlp.c_fc",
355
+ "transformer.visual.transformer.resblocks.6.mlp.c_proj",
356
+ "transformer.visual.transformer.resblocks.22.mlp.c_proj",
357
+ "transformer.visual.transformer.resblocks.37.mlp.c_proj",
358
+ "transformer.visual.transformer.resblocks.17.attn.in_proj",
359
+ "transformer.visual.transformer.resblocks.46.attn.out_proj",
360
+ "transformer.h.24.mlp.w2",
361
+ "transformer.h.27.mlp.w1",
362
+ "transformer.visual.transformer.resblocks.11.attn.in_proj",
363
+ "transformer.visual.transformer.resblocks.4.mlp.c_proj",
364
+ "transformer.visual.transformer.resblocks.21.mlp.c_proj",
365
+ "transformer.visual.transformer.resblocks.26.mlp.c_proj",
366
+ "transformer.visual.transformer.resblocks.15.mlp.c_fc",
367
+ "transformer.h.2.mlp.c_proj",
368
+ "transformer.h.1.mlp.c_proj",
369
+ "transformer.h.5.mlp.c_proj",
370
+ "transformer.visual.transformer.resblocks.45.mlp.c_fc",
371
+ "transformer.visual.transformer.resblocks.0.attn.in_proj",
372
+ "transformer.h.25.mlp.w2",
373
+ "transformer.h.20.attn.c_proj",
374
+ "transformer.h.17.attn.c_proj",
375
+ "transformer.visual.transformer.resblocks.1.mlp.c_fc"
376
+ ],
377
+ "task_type": "CAUSAL_LM",
378
+ "use_dora": false,
379
+ "use_rslora": false
380
+ }
checkpoint-5600/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d58bbd17a8ea8af13c051ea733b5e9e12a706cec08418f192ade564617649841
3
+ size 469105640
checkpoint-5600/global_step5600/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7ed194eb4899c0868b70ce010ef0795ce7697e2cc444ee9fc3358ae29d7ec09
3
+ size 351761648
checkpoint-5600/global_step5600/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2d3406f13de85ce09e45bbfc7061da3603c58312b878011cb7648824a5162e87
3
+ size 351761776
checkpoint-5600/global_step5600/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3630c9c4b3f996a0d3c2ea98b5ee83feafab32d891e14fbb398ab1a1b1f76a33
3
+ size 351761776
checkpoint-5600/global_step5600/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:177d7350e06923b7382479b602d00af17a26232d675dd8260d5b3fc2db721893
3
+ size 351761584
checkpoint-5600/global_step5600/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:edd3fab7ab72fbb200ea0ebdccb24df934aed3c3e314c24865e665caba141b1b
3
+ size 351763184
checkpoint-5600/global_step5600/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08de4f02f483d04712e8391b81df8a0bee7487580a62574675d088c33959dcc0
3
+ size 351771440
checkpoint-5600/global_step5600/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e3814659f386185f0002fe8e976af211866ddafbcb7e0ec9e77fa6b41800cfd
3
+ size 351771632
checkpoint-5600/global_step5600/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85d004f275a82a850b49170565201f6f4bd5b8a4c7d059f9cb3db6f1417866d1
3
+ size 351771312
checkpoint-5600/global_step5600/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7de07368f9c41aaed1ab9ed9cef3f066510d429fddfa6808988adb6ee6fafd3f
3
+ size 469584556
checkpoint-5600/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step5600
checkpoint-5600/qwen.tiktoken ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-5600/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d76689726238a02fa7d36c5dd9b19d6040a0e4dbe64b5f6c07799df93d3c5795
3
+ size 15920
checkpoint-5600/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c2746c714a56b7f84bb7bddc8ce75304950560d893ae54da816f44fe8a0a8d5
3
+ size 15920
checkpoint-5600/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4839b08537070bd768b6d679f3cc66f6fbabdaeeb1c7f4943e0636cf744793f6
3
+ size 15920
checkpoint-5600/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ada358db4e262d944accb7b8444c68a5aa7c1ca633d52abe14905cca1a0ca8a0
3
+ size 15920
checkpoint-5600/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:781e3074ca79f10e7ecc22e01388a1a3b2bfc6a02a19b58a30490f2df8b97cf8
3
+ size 15920
checkpoint-5600/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:160aac05886e800bce5b75e8495f0afbda9d3a5b198b14bd2782a5c87a7f0192
3
+ size 15920
checkpoint-5600/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6811bf940462363693e7b94f5efb17f811e37396fd4eb061426f5139caf76f5
3
+ size 15920
checkpoint-5600/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8c02c6a1be640f832c5387e678a0712a48dd90a4175800fd5d65bc83663e8cc
3
+ size 15920