sumuks commited on
Commit
fa9ec4d
·
verified ·
1 Parent(s): 0bfa37f

End of training

Browse files
Files changed (1) hide show
  1. README.md +150 -0
README.md ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: Qwen/Qwen2.5-7B
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ datasets:
9
+ - sumuks/openreview_wintermute_0.2_training_data
10
+ model-index:
11
+ - name: purple-wintermute-0.2-7b
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
19
+ <details><summary>See axolotl config</summary>
20
+
21
+ axolotl version: `0.6.0`
22
+ ```yaml
23
+ base_model: Qwen/Qwen2.5-7B
24
+ hub_model_id: sumuks/purple-wintermute-0.2-7b
25
+ trust_remote_code: true
26
+
27
+ load_in_8bit: false
28
+ load_in_4bit: false
29
+ strict: false
30
+ bf16: true
31
+ hf_use_auth_token: true
32
+
33
+ plugins:
34
+ - axolotl.integrations.liger.LigerPlugin
35
+ liger_rope: true
36
+ liger_rms_norm: true
37
+ liger_glu_activation: true
38
+ liger_layer_norm: true
39
+ liger_fused_linear_cross_entropy: true
40
+ save_safetensors:
41
+
42
+ datasets:
43
+ - path: sumuks/openreview_wintermute_0.2_training_data
44
+ type: completion
45
+ field: text
46
+ dataset_prepared_path: .axolotl_cache_data/wintermute_0.2
47
+ shuffle_merged_datasets: true
48
+ # dataset_exact_deduplication: true
49
+ val_set_size: 0.005
50
+ output_dir: ./../../outputs/purple-wintermute-0.2-7b
51
+ push_dataset_to_hub: sumuks/purple_wintermute_0.2_training_data_in_progress
52
+
53
+ sequence_length: 2048
54
+ sample_packing: true
55
+ pad_to_sequence_len: true
56
+
57
+ adapter: lora
58
+ lora_r: 256
59
+ lora_alpha: 32
60
+ lora_dropout: 0.05
61
+ peft_use_rslora: true
62
+ lora_target_linear: true
63
+
64
+ gradient_accumulation_steps: 4
65
+ micro_batch_size: 16
66
+ eval_batch_size: 1
67
+ num_epochs: 3
68
+ learning_rate: 5e-5
69
+ warmup_ratio: 0.05
70
+ evals_per_epoch: 5
71
+ saves_per_epoch: 5
72
+ gradient_checkpointing: true
73
+ lr_scheduler: cosine
74
+ optimizer: paged_adamw_8bit
75
+
76
+ profiler_steps: 100
77
+ save_safetensors: true
78
+ train_on_inputs: true
79
+ wandb_project: wintermute
80
+ wandb_name: purple-wintermute-0.2-7b
81
+ deepspeed: deepspeed_configs/zero1.json
82
+ ```
83
+
84
+ </details><br>
85
+
86
+ # purple-wintermute-0.2-7b
87
+
88
+ This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B) on the sumuks/openreview_wintermute_0.2_training_data dataset.
89
+ It achieves the following results on the evaluation set:
90
+ - Loss: 1.3961
91
+
92
+ ## Model description
93
+
94
+ More information needed
95
+
96
+ ## Intended uses & limitations
97
+
98
+ More information needed
99
+
100
+ ## Training and evaluation data
101
+
102
+ More information needed
103
+
104
+ ## Training procedure
105
+
106
+ ### Training hyperparameters
107
+
108
+ The following hyperparameters were used during training:
109
+ - learning_rate: 5e-05
110
+ - train_batch_size: 16
111
+ - eval_batch_size: 1
112
+ - seed: 42
113
+ - distributed_type: multi-GPU
114
+ - num_devices: 4
115
+ - gradient_accumulation_steps: 4
116
+ - total_train_batch_size: 256
117
+ - total_eval_batch_size: 4
118
+ - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
119
+ - lr_scheduler_type: cosine
120
+ - lr_scheduler_warmup_steps: 389
121
+ - num_epochs: 3
122
+
123
+ ### Training results
124
+
125
+ | Training Loss | Epoch | Step | Validation Loss |
126
+ |:-------------:|:------:|:----:|:---------------:|
127
+ | No log | 0.0004 | 1 | 2.6905 |
128
+ | 1.6977 | 0.2002 | 519 | 1.8454 |
129
+ | 1.5955 | 0.4004 | 1038 | 1.7875 |
130
+ | 1.4268 | 0.6006 | 1557 | 1.7164 |
131
+ | 1.2613 | 0.8008 | 2076 | 1.6061 |
132
+ | 1.1526 | 1.0012 | 2595 | 1.5174 |
133
+ | 1.0637 | 1.2014 | 3114 | 1.4811 |
134
+ | 1.0251 | 1.4015 | 3633 | 1.4466 |
135
+ | 0.9791 | 1.6017 | 4152 | 1.4230 |
136
+ | 0.9609 | 1.8019 | 4671 | 1.4072 |
137
+ | 1.0291 | 2.0023 | 5190 | 1.3994 |
138
+ | 0.917 | 2.2025 | 5709 | 1.4018 |
139
+ | 0.9306 | 2.4027 | 6228 | 1.3995 |
140
+ | 0.8935 | 2.6029 | 6747 | 1.3963 |
141
+ | 0.9343 | 2.8031 | 7266 | 1.3961 |
142
+
143
+
144
+ ### Framework versions
145
+
146
+ - PEFT 0.14.0
147
+ - Transformers 4.47.1
148
+ - Pytorch 2.5.1
149
+ - Datasets 3.2.0
150
+ - Tokenizers 0.21.0