|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
from typing import Dict |
|
|
|
import pytest |
|
import torch |
|
from transformers import AutoModelForCausalLM |
|
from trl import AutoModelForCausalLMWithValueHead |
|
|
|
from llamafactory.extras.misc import get_current_device |
|
from llamafactory.hparams import get_infer_args |
|
from llamafactory.model import load_model, load_tokenizer |
|
|
|
|
|
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3") |
|
|
|
TINY_LLAMA_VALUEHEAD = os.environ.get("TINY_LLAMA_VALUEHEAD", "llamafactory/tiny-random-Llama-3-valuehead") |
|
|
|
INFER_ARGS = { |
|
"model_name_or_path": TINY_LLAMA, |
|
"template": "llama3", |
|
"infer_dtype": "float16", |
|
} |
|
|
|
|
|
def compare_model(model_a: "torch.nn.Module", model_b: "torch.nn.Module"): |
|
state_dict_a = model_a.state_dict() |
|
state_dict_b = model_b.state_dict() |
|
assert set(state_dict_a.keys()) == set(state_dict_b.keys()) |
|
for name in state_dict_a.keys(): |
|
assert torch.allclose(state_dict_a[name], state_dict_b[name], rtol=1e-4, atol=1e-5) |
|
|
|
|
|
@pytest.fixture |
|
def fix_valuehead_cpu_loading(): |
|
def post_init(self: "AutoModelForCausalLMWithValueHead", state_dict: Dict[str, "torch.Tensor"]): |
|
state_dict = {k[7:]: state_dict[k] for k in state_dict.keys() if k.startswith("v_head.")} |
|
self.v_head.load_state_dict(state_dict, strict=False) |
|
del state_dict |
|
|
|
AutoModelForCausalLMWithValueHead.post_init = post_init |
|
|
|
|
|
def test_base(): |
|
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS) |
|
tokenizer_module = load_tokenizer(model_args) |
|
model = load_model(tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False) |
|
|
|
ref_model = AutoModelForCausalLM.from_pretrained( |
|
TINY_LLAMA, torch_dtype=torch.float16, device_map=get_current_device() |
|
) |
|
compare_model(model, ref_model) |
|
|
|
|
|
@pytest.mark.usefixtures("fix_valuehead_cpu_loading") |
|
def test_valuehead(): |
|
model_args, _, finetuning_args, _ = get_infer_args(INFER_ARGS) |
|
tokenizer_module = load_tokenizer(model_args) |
|
model = load_model( |
|
tokenizer_module["tokenizer"], model_args, finetuning_args, is_trainable=False, add_valuehead=True |
|
) |
|
|
|
ref_model: "AutoModelForCausalLMWithValueHead" = AutoModelForCausalLMWithValueHead.from_pretrained( |
|
TINY_LLAMA_VALUEHEAD, torch_dtype=torch.float16, device_map=get_current_device() |
|
) |
|
ref_model.v_head = ref_model.v_head.to(torch.float16) |
|
compare_model(model, ref_model) |
|
|