sunga25 commited on
Commit
6460da8
1 Parent(s): 12c5911

Create src/main.py

Browse files
Files changed (1) hide show
  1. src/main.py +211 -0
src/main.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import logging
3
+ import pandas as pd
4
+ import numpy as np
5
+ import matplotlib.pyplot as plt
6
+ import tensorflow as tf
7
+ from sklearn.model_selection import train_test_split
8
+ from sklearn.preprocessing import StandardScaler
9
+
10
+ # Set up logging
11
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
12
+
13
+ def load_data(start_year=2000, end_year=2017):
14
+ csv_files = [f'atp_matches_{year}.csv' for year in range(start_year, end_year + 1)]
15
+ dataframes = []
16
+
17
+ for file in csv_files:
18
+ try:
19
+ data = pd.read_csv(file)
20
+ logging.info(f"Loaded {file}: {len(data)} rows")
21
+ dataframes.append(data)
22
+ except FileNotFoundError:
23
+ logging.warning(f"File {file} not found.")
24
+ continue
25
+
26
+ if not dataframes:
27
+ raise FileNotFoundError("No CSV files found. Ensure data files are present.")
28
+
29
+ combined_df = pd.concat(dataframes, ignore_index=True)
30
+ logging.info(f"Total rows after combining all dataframes: {len(combined_df)}")
31
+ return combined_df
32
+
33
+ def preprocess_data(df):
34
+ logging.info(f"Before preprocessing: {len(df)} rows")
35
+ df = df.loc[:, ~df.columns.duplicated()]
36
+ df = df.drop_duplicates().reset_index(drop=True)
37
+
38
+ df['tourney_date'] = pd.to_datetime(df['tourney_date'], format='%Y%m%d', errors='coerce')
39
+ df['tourney_date_ordinal'] = df['tourney_date'].apply(lambda x: x.toordinal() if pd.notnull(x) else None)
40
+
41
+ df['winner_id'] = df['winner_id'].fillna(df['winner_id'].mode().iloc[0])
42
+ df['loser_id'] = df['loser_id'].fillna(df['loser_id'].mode().iloc[0])
43
+ df['winner_name'] = df['winner_name'].fillna('Unknown')
44
+ df['loser_name'] = df['loser_name'].fillna('Unknown')
45
+
46
+ logging.info(f"After preprocessing: {len(df)} rows")
47
+ logging.info(f"Date range: {df['tourney_date'].min()} to {df['tourney_date'].max()}")
48
+ logging.info(f"Years present in the data: {sorted(df['tourney_date'].dt.year.unique())}")
49
+ return df
50
+
51
+ def engineer_features(df):
52
+ numeric_columns = ['winner_rank', 'loser_rank', 'winner_seed', 'loser_seed',
53
+ 'winner_age', 'loser_age', 'w_svpt', 'l_svpt', 'w_ace',
54
+ 'l_ace', 'w_df', 'l_df', 'w_bpSaved', 'l_bpSaved',
55
+ 'tourney_date_ordinal']
56
+
57
+ for col in numeric_columns:
58
+ if col in df.columns:
59
+ df[col] = pd.to_numeric(df[col], errors='coerce')
60
+ logging.info(f"Column {col}: {df[col].isnull().sum()} null values")
61
+ else:
62
+ logging.warning(f"Column '{col}' not found in dataframe.")
63
+
64
+ df[numeric_columns] = df[numeric_columns].fillna(df[numeric_columns].median())
65
+
66
+ df['age_diff'] = df['winner_age'] - df['loser_age']
67
+ df['service_diff'] = df['w_svpt'] - df['l_svpt']
68
+ df['ace_diff'] = df['w_ace'] - df['l_ace']
69
+ df['df_diff'] = df['w_df'] - df['l_df']
70
+ df['bp_saved_diff'] = df['w_bpSaved'] - df['l_bpSaved']
71
+
72
+ numeric_columns.extend(['age_diff', 'service_diff', 'ace_diff', 'df_diff', 'bp_saved_diff'])
73
+
74
+ logging.info(f"After feature engineering: {len(df)} rows")
75
+ return df, numeric_columns
76
+
77
+ def create_vae_model(input_dim, latent_dim=2):
78
+ encoder = tf.keras.Sequential([
79
+ tf.keras.layers.Dense(16, activation='relu', input_shape=(input_dim,)),
80
+ tf.keras.layers.Dense(latent_dim)
81
+ ])
82
+
83
+ decoder = tf.keras.Sequential([
84
+ tf.keras.layers.Dense(16, activation='relu', input_shape=(latent_dim,)),
85
+ tf.keras.layers.Dense(input_dim, activation='sigmoid')
86
+ ])
87
+
88
+ class VAEModel(tf.keras.Model):
89
+ def __init__(self, encoder, decoder, **kwargs):
90
+ super(VAEModel, self).__init__(**kwargs)
91
+ self.encoder = encoder
92
+ self.decoder = decoder
93
+
94
+ def call(self, inputs):
95
+ encoded = self.encoder(inputs)
96
+ decoded = self.decoder(encoded)
97
+ return decoded
98
+
99
+ vae = VAEModel(encoder, decoder)
100
+ vae.compile(optimizer='adam', loss='mse')
101
+
102
+ return vae
103
+
104
+ def detect_anomalies(df, threshold=None):
105
+ if threshold is None:
106
+ threshold = df['rank_diff'].abs().quantile(0.85) # 85th percentile
107
+ logging.info(f"Using anomaly threshold: {threshold}")
108
+ logging.info(f"Years in the data before anomaly detection: {sorted(df['tourney_date'].dt.year.unique())}")
109
+
110
+ anomalies = []
111
+ for i, row in df.iterrows():
112
+ rank_diff = row['winner_rank'] - row['loser_rank']
113
+ if abs(rank_diff) > threshold:
114
+ anomalies.append(row)
115
+
116
+ anomalies_df = pd.DataFrame(anomalies)
117
+
118
+ if anomalies_df.empty:
119
+ logging.warning("No anomalies detected!")
120
+ return anomalies_df
121
+
122
+ yearly_counts = anomalies_df['tourney_date'].dt.year.value_counts().sort_index()
123
+ logging.info(f"Anomalies per year:\n{yearly_counts}")
124
+
125
+ logging.info(f"Years in the anomalies: {sorted(anomalies_df['tourney_date'].dt.year.unique())}")
126
+ logging.info(f"Total anomalies: {len(anomalies_df)}")
127
+
128
+ return anomalies_df
129
+
130
+ def analyze_anomalies(anomalies):
131
+ anomalies['tourney_name'] = anomalies['tourney_name'].fillna('Unknown')
132
+
133
+ anomalies_per_year = anomalies.groupby(anomalies['tourney_date'].dt.year).size()
134
+ anomalies_per_player = pd.concat([anomalies['winner_name'], anomalies['loser_name']]).value_counts()
135
+ anomalies_per_tournament = anomalies['tourney_name'].value_counts()
136
+
137
+ grand_slams = anomalies[anomalies['tourney_name'].str.contains('Grand Slam', case=False, na=False)]['tourney_name'].value_counts()
138
+ masters_1000 = anomalies[anomalies['tourney_name'].str.contains('Masters 1000', case=False, na=False)]['tourney_name'].value_counts()
139
+
140
+ return anomalies_per_year, anomalies_per_player, anomalies_per_tournament, grand_slams, masters_1000
141
+
142
+ def save_results(anomalies, anomalies_per_year, anomalies_per_player, anomalies_per_tournament, grand_slams, masters_1000):
143
+ anomalies.to_csv('anomalies.csv', index=False)
144
+ anomalies_per_year.to_csv('anomalies_per_year.csv')
145
+ anomalies_per_player.to_csv('anomalies_per_player.csv')
146
+ anomalies_per_tournament.to_csv('anomalies_per_tournament.csv')
147
+ grand_slams.to_csv('anomalies_per_grand_slam.csv')
148
+ masters_1000.to_csv('anomalies_per_masters_1000.csv')
149
+
150
+ pd.DataFrame(anomalies_per_player.index.tolist(), columns=['Player']).to_csv('most_anomalies_players.csv', index=False)
151
+ pd.DataFrame(anomalies_per_tournament.index.tolist(), columns=['Tournament']).to_csv('most_anomalies_tournaments.csv', index=False)
152
+ pd.DataFrame(grand_slams.index.tolist(), columns=['Grand Slam']).to_csv('most_anomalies_grand_slams.csv', index=False)
153
+ pd.DataFrame(masters_1000.index.tolist(), columns=['Masters 1000']).to_csv('most_anomalies_masters_1000.csv', index=False)
154
+
155
+ def main():
156
+ logging.info("Starting script...")
157
+
158
+ df = load_data()
159
+ logging.info(f"Total rows after loading: {len(df)}")
160
+
161
+ df = preprocess_data(df)
162
+ df, numeric_columns = engineer_features(df)
163
+ logging.info(f"Total rows after preprocessing and feature engineering: {len(df)}")
164
+
165
+ # Calculate rank difference
166
+ df['rank_diff'] = df['winner_rank'] - df['loser_rank']
167
+
168
+ # Log rank difference statistics
169
+ logging.info(f"Rank difference stats:\n{df['rank_diff'].describe()}")
170
+ logging.info(f"Rank difference percentiles:")
171
+ for percentile in [50, 75, 90, 95, 99]:
172
+ logging.info(f"{percentile}th percentile: {df['rank_diff'].abs().quantile(percentile/100)}")
173
+
174
+ # Log some statistics about the 'winner_rank' and 'loser_rank' columns
175
+ logging.info(f"Winner rank stats:\n{df['winner_rank'].describe()}")
176
+ logging.info(f"Loser rank stats:\n{df['loser_rank'].describe()}")
177
+
178
+ X = df[numeric_columns].copy()
179
+ y = df['winner_rank'] - df['loser_rank']
180
+
181
+ scaler = StandardScaler()
182
+ X_scaled = scaler.fit_transform(X)
183
+
184
+ X_train_scaled, X_test_scaled, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
185
+
186
+ X_train_scaled = X_train_scaled.astype('float32')
187
+ X_test_scaled = X_test_scaled.astype('float32')
188
+
189
+ vae = create_vae_model(X_train_scaled.shape[1])
190
+
191
+ logging.info("Model compiled. Starting training...")
192
+ history = vae.fit(X_train_scaled, X_train_scaled, epochs=10, batch_size=32,
193
+ validation_data=(X_test_scaled, X_test_scaled), verbose=1)
194
+ logging.info("Model training complete.")
195
+
196
+ anomalies = detect_anomalies(df)
197
+ if not anomalies.empty:
198
+ logging.info(f"Number of anomalies: {len(anomalies)}")
199
+ logging.info(f"Anomalies date range: {anomalies['tourney_date'].min()} to {anomalies['tourney_date'].max()}")
200
+
201
+ anomalies_per_year, anomalies_per_player, anomalies_per_tournament, grand_slams, masters_1000 = analyze_anomalies(anomalies)
202
+
203
+ logging.info("Saving results...")
204
+ save_results(anomalies, anomalies_per_year, anomalies_per_player, anomalies_per_tournament, grand_slams, masters_1000)
205
+ else:
206
+ logging.warning("No anomalies detected. Skipping analysis and result saving.")
207
+
208
+ logging.info("Script execution completed.")
209
+
210
+ if __name__ == "__main__":
211
+ main()