--- library_name: transformers license: other base_model: nvidia/mit-b0 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: custom-object-test4 results: [] --- # custom-object-test4 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the sungile/custom-object-masking5 dataset. It achieves the following results on the evaluation set: - Loss: 0.2992 - Mean Iou: 0.0 - Mean Accuracy: nan - Overall Accuracy: nan - Accuracy Unknown: nan - Accuracy Background: nan - Accuracy Object: nan - Iou Unknown: 0.0 - Iou Background: 0.0 - Iou Object: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unknown | Accuracy Background | Accuracy Object | Iou Unknown | Iou Background | Iou Object | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:----------------:|:-------------------:|:---------------:|:-----------:|:--------------:|:----------:| | 1.0218 | 0.25 | 20 | 1.0125 | 0.0 | nan | nan | nan | nan | nan | 0.0 | 0.0 | 0.0 | | 0.8291 | 0.5 | 40 | 0.7527 | 0.0 | nan | nan | nan | nan | nan | 0.0 | 0.0 | 0.0 | | 0.7097 | 0.75 | 60 | 0.6208 | 0.0 | nan | nan | nan | nan | nan | 0.0 | 0.0 | 0.0 | | 0.606 | 1.0 | 80 | 0.5042 | 0.0 | nan | nan | nan | nan | nan | 0.0 | 0.0 | 0.0 | | 0.5577 | 1.25 | 100 | 0.4111 | 0.0 | nan | nan | nan | nan | nan | 0.0 | 0.0 | 0.0 | | 0.4422 | 1.5 | 120 | 0.4041 | 0.0 | nan | nan | nan | nan | nan | 0.0 | 0.0 | 0.0 | | 0.3799 | 1.75 | 140 | 0.3846 | 0.0 | nan | nan | nan | nan | nan | 0.0 | 0.0 | 0.0 | | 0.3578 | 2.0 | 160 | 0.3197 | 0.0 | nan | nan | nan | nan | nan | 0.0 | 0.0 | nan | | 0.3401 | 2.25 | 180 | 0.3423 | 0.0 | nan | nan | nan | nan | nan | 0.0 | 0.0 | nan | | 0.3223 | 2.5 | 200 | 0.3077 | 0.0 | nan | nan | nan | nan | nan | 0.0 | 0.0 | 0.0 | | 0.3068 | 2.75 | 220 | 0.3110 | 0.0 | nan | nan | nan | nan | nan | 0.0 | 0.0 | 0.0 | | 0.2823 | 3.0 | 240 | 0.2992 | 0.0 | nan | nan | nan | nan | nan | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.1.0+cu118 - Datasets 3.2.0 - Tokenizers 0.21.0