File size: 15,085 Bytes
111d9b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
import argparse
import datetime
import logging
import math
import random
import time
import torch
from os import path as osp
import os, sys
sys.path.append(osp.join(os.getcwd()))

from data import create_dataloader, create_dataset
from data.data_sampler import EnlargedSampler
from data.prefetch_dataloader import CPUPrefetcher, CUDAPrefetcher
from models import create_model
from utils import (MessageLogger, check_resume, get_env_info,
                           get_root_logger, get_time_str, init_tb_logger,
                           init_wandb_logger, make_exp_dirs, mkdir_and_rename,
                           set_random_seed)
from utils.dist_util import get_dist_info, init_dist
from utils.options import dict2str, parse
from tensorboardX import SummaryWriter
import numpy as np

def parse_options(is_train=True):
    parser = argparse.ArgumentParser()
    parser.add_argument(
        '-opt', type=str, required=True, help='Path to option YAML file.')
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm'],
        default='none',
        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
    args = parser.parse_args()
    opt = parse(args.opt, is_train=is_train)

    # distributed settings
    if args.launcher == 'none':
        opt['dist'] = False
        print('Disable distributed.', flush=True)
    else:
        opt['dist'] = True
        if args.launcher == 'slurm' and 'dist_params' in opt:
            init_dist(args.launcher, **opt['dist_params'])
        else:
            init_dist(args.launcher)
            print('init dist .. ', args.launcher)

    opt['rank'], opt['world_size'] = get_dist_info()

    # random seed
    seed = opt.get('manual_seed')
    if seed is None:
        seed = random.randint(1, 10000)
        opt['manual_seed'] = seed
    set_random_seed(seed + opt['rank'])

    return opt


def init_loggers(opt):
    log_file = osp.join(opt['path']['log'],
                        f"train_{opt['name']}_{get_time_str()}.log")
    logger = get_root_logger(
        logger_name='basicsr', log_level=logging.INFO, log_file=log_file)
    logger.info(get_env_info())
    logger.info(dict2str(opt))

    # initialize wandb logger before tensorboard logger to allow proper sync:
    if (opt['logger'].get('wandb')
            is not None) and (opt['logger']['wandb'].get('project')
                              is not None) and ('debug' not in opt['name']):
        assert opt['logger'].get('use_tb_logger') is True, (
            'should turn on tensorboard when using wandb')
        init_wandb_logger(opt)
    tb_logger = None
    if opt['logger'].get('use_tb_logger') and 'debug' not in opt['name']:
        tb_logger = init_tb_logger(log_dir=osp.join('tb_logger', opt['name']))
    return logger, tb_logger


def create_train_val_dataloader(opt, logger):
    # create train and val dataloaders
    train_loader, val_loader, val_loaders = None, None, {}
    for phase, dataset_opt in opt['datasets'].items():
        if phase == 'train':
            dataset_enlarge_ratio = dataset_opt.get('dataset_enlarge_ratio', 1)
            train_set = create_dataset(dataset_opt)
            train_sampler = EnlargedSampler(train_set, opt['world_size'],
                                            opt['rank'], dataset_enlarge_ratio)
            train_loader = create_dataloader(
                train_set,
                dataset_opt,
                num_gpu=opt['num_gpu'],
                dist=opt['dist'],
                sampler=train_sampler,
                seed=opt['manual_seed'])

            num_iter_per_epoch = math.ceil(
                len(train_set) * dataset_enlarge_ratio /
                (dataset_opt['batch_size_per_gpu'] * opt['world_size']))
            print(len(train_set))
            total_iters = int(opt['train']['total_iter'])
            total_epochs = math.ceil(total_iters / (num_iter_per_epoch))
            logger.info(
                'Training statistics:'
                f'\n\tNumber of train images: {len(train_set)}'
                f'\n\tDataset enlarge ratio: {dataset_enlarge_ratio}'
                f'\n\tBatch size per gpu: {dataset_opt["batch_size_per_gpu"]}'
                f'\n\tWorld size (gpu number): {opt["world_size"]}'
                f'\n\tRequire iter number per epoch: {num_iter_per_epoch}'
                f'\n\tTotal epochs: {total_epochs}; iters: {total_iters}.')

        elif phase == 'val_snow_s':
            val_set = create_dataset(dataset_opt)
            val_loader = create_dataloader(
                val_set,
                dataset_opt,
                num_gpu=opt['num_gpu'],
                dist=opt['dist'],
                sampler=None,
                seed=opt['manual_seed'])
            logger.info(
                f'Number of val images/folders in {dataset_opt["name"]}: '
                f'{len(val_set)}')
        elif phase == 'val_snow_l':
            val_set = create_dataset(dataset_opt)
            val_loader = create_dataloader(
                val_set,
                dataset_opt,
                num_gpu=opt['num_gpu'],
                dist=opt['dist'],
                sampler=None,
                seed=opt['manual_seed'])
            logger.info(
                f'Number of val images/folders in {dataset_opt["name"]}: '
                f'{len(val_set)}')
        elif phase == 'val_test1':
            val_set = create_dataset(dataset_opt)
            val_loader = create_dataloader(
                val_set,
                dataset_opt,
                num_gpu=opt['num_gpu'],
                dist=opt['dist'],
                sampler=None,
                seed=opt['manual_seed'])
            logger.info(
                f'Number of val images/folders in {dataset_opt["name"]}: '
                f'{len(val_set)}')
        elif phase == 'val_raindrop':
            val_set = create_dataset(dataset_opt)
            val_loader = create_dataloader(
                val_set,
                dataset_opt,
                num_gpu=opt['num_gpu'],
                dist=opt['dist'],
                sampler=None,
                seed=opt['manual_seed'])
            logger.info(
                f'Number of val images/folders in {dataset_opt["name"]}: '
                f'{len(val_set)}')

        else:
            raise ValueError(f'Dataset phase {phase} is not recognized.')
        if val_loader is not None:
            val_loaders[dataset_opt["name"]] = val_loader
        val_loader = None
    return train_loader, train_sampler, val_loaders, total_epochs, total_iters


def main():
    # parse options, set distributed setting, set ramdom seed
    opt = parse_options(is_train=True)

    torch.backends.cudnn.benchmark = True
    # torch.backends.cudnn.deterministic = True

    # automatic resume ..
    state_folder_path = 'experiments/{}/training_states/'.format(opt['name'])
    import os
    try:
        states = os.listdir(state_folder_path)
    except:
        states = []

    resume_state = None
    if len(states) > 0:
        max_state_file = '{}.state'.format(max([int(x[0:-6]) for x in states]))
        resume_state = os.path.join(state_folder_path, max_state_file)
        opt['path']['resume_state'] = resume_state

    # load resume states if necessary
    if opt['path'].get('resume_state'):
        device_id = torch.cuda.current_device()
        resume_state = torch.load(
            opt['path']['resume_state'],
            map_location=lambda storage, loc: storage.cuda(device_id))
    else:
        resume_state = None

    # mkdir for experiments and logger
    if resume_state is None:
        make_exp_dirs(opt)
        if opt['logger'].get('use_tb_logger') and 'debug' not in opt[
                'name'] and opt['rank'] == 0:
            mkdir_and_rename(osp.join('tb_logger', opt['name']))

    # initialize loggers
    logger, tb_logger = init_loggers(opt)

    # create train and validation dataloaders
    result = create_train_val_dataloader(opt, logger)
    train_loader, train_sampler, val_loaders, total_epochs, total_iters = result

    # create model
    if resume_state:  # resume training
        check_resume(opt, resume_state['iter'])
        model = create_model(opt)
        model.resume_training(resume_state)  # handle optimizers and schedulers
        logger.info(f"Resuming training from epoch: {resume_state['epoch']}, "
                    f"iter: {resume_state['iter']}.")
        start_epoch = resume_state['epoch']
        current_iter = resume_state['iter']
    else:
        model = create_model(opt)
        start_epoch = 0
        current_iter = 0

    # create message logger (formatted outputs)
    msg_logger = MessageLogger(opt, current_iter, tb_logger)

    # dataloader prefetcher
    prefetch_mode = opt['datasets']['train'].get('prefetch_mode')
    if prefetch_mode is None or prefetch_mode == 'cpu':
        prefetcher = CPUPrefetcher(train_loader)
    elif prefetch_mode == 'cuda':
        prefetcher = CUDAPrefetcher(train_loader, opt)
        logger.info(f'Use {prefetch_mode} prefetch dataloader')
        if opt['datasets']['train'].get('pin_memory') is not True:
            raise ValueError('Please set pin_memory=True for CUDAPrefetcher.')
    else:
        raise ValueError(f'Wrong prefetch_mode {prefetch_mode}.'
                         "Supported ones are: None, 'cuda', 'cpu'.")

    # training
    logger.info(
        f'Start training from epoch: {start_epoch}, iter: {current_iter}')
    data_time, iter_time = time.time(), time.time()
    start_time = time.time()

    # for epoch in range(start_epoch, total_epochs + 1):

    iters = opt['datasets']['train'].get('iters')
    batch_size = opt['datasets']['train'].get('batch_size_per_gpu')
    mini_batch_sizes = opt['datasets']['train'].get('mini_batch_sizes')
    gt_size = opt['datasets']['train'].get('gt_size')
    mini_gt_sizes = opt['datasets']['train'].get('gt_sizes')

    groups = np.array([sum(iters[0:i + 1]) for i in range(0, len(iters))])

    logger_j = [True] * len(groups)

    scale = opt['scale']

    epoch = start_epoch
    loss_list = []
    loss_writer = SummaryWriter(opt['path']['log'])
    while current_iter <= total_iters:
        train_sampler.set_epoch(epoch)
        prefetcher.reset()
        train_data = prefetcher.next()

        while train_data is not None:
#            logger.info(train_data['lq_path'])
            data_time = time.time() - data_time

            current_iter += 1
            if current_iter > total_iters:
                break
#            if current_iter <= 4600:
#                continue
            # update learning rate
            if opt['train']['scheduler'].get('type') != 'ReduceLROnPlateau':
                model.update_learning_rate(
                    current_iter, warmup_iter=opt['train'].get('warmup_iter', -1))
            else:
                if len(loss_list) >= 1000:
                    model.update_learning_rate(
                        current_iter, warmup_iter=opt['train'].get('warmup_iter', -1), value_scheduler=np.mean(loss_list))
                    loss_writer.add_scalar('loss sche_step', np.mean(loss_list), current_iter)
                    loss_list = []

            
            ### ------Progressive learning ---------------------
            j = ((current_iter>groups) !=True).nonzero()[0]
            if len(j) == 0:
                bs_j = len(groups) - 1
            else:
                bs_j = j[0]

            mini_gt_size = mini_gt_sizes[bs_j]
            mini_batch_size = mini_batch_sizes[bs_j]
            
            if logger_j[bs_j]:
                logger.info('\n Updating Patch_Size to {} and Batch_Size to {} \n'.format(mini_gt_size, mini_batch_size*torch.cuda.device_count())) 
                logger_j[bs_j] = False

            lq = train_data['lq']
            gt = train_data['gt']
            label = train_data['label']
            if mini_batch_size < batch_size:
                indices = random.sample(range(0, batch_size), k=mini_batch_size)
                lq = lq[indices]
                gt = gt[indices]
                label = label[indices]

            if mini_gt_size < gt_size:
                x0 = int((gt_size - mini_gt_size) * random.random())
                y0 = int((gt_size - mini_gt_size) * random.random())
                x1 = x0 + mini_gt_size
                y1 = y0 + mini_gt_size
                lq = lq[:,:,x0:x1,y0:y1]
                gt = gt[:,:,x0*scale:x1*scale,y0*scale:y1*scale]
            ###-------------------------------------------

            
            model.feed_train_data({'lq': lq, 'gt':gt, "label":label})
            model.optimize_parameters(current_iter)
            for l_name in model.loss_dict:
                loss_writer.add_scalar('{} loss'.format(l_name), model.loss_dict[l_name], current_iter)
            loss_list.append(model.loss_total)
            iter_time = time.time() - iter_time
            # log
            if current_iter % opt['logger']['print_freq'] == 0:
                log_vars = {'epoch': epoch, 'iter': current_iter}
                log_vars.update({'lrs': model.get_current_learning_rate()})
                log_vars.update({'time': iter_time, 'data_time': data_time})
                log_vars.update(model.get_current_log())
                msg_logger(log_vars)

            # save models and training states
            if current_iter % opt['logger']['save_checkpoint_freq'] == 0:
                logger.info('Saving models and training states.')
                model.save(epoch, current_iter)

            # validation
            if opt.get('val') is not None and (current_iter %
                                               opt['val']['val_freq'] == 0):
                rgb2bgr = opt['val'].get('rgb2bgr', True)
                # wheather use uint8 image to compute metrics
                use_image = opt['val'].get('use_image', True)
                for val_name, val_loader in val_loaders.items():
                    metric_out = model.validation(val_loader, current_iter, tb_logger,
                                 opt['val']['save_img'], rgb2bgr, use_image )
#                metric_out = model.metric_results.items()[opt['val']['metrics'].keys()[0]]
                    if metric_out != 0:
                        loss_writer.add_scalar('psnr_'+val_name, metric_out, current_iter)
            data_time = time.time()
            iter_time = time.time()
            train_data = prefetcher.next()
        # end of iter
        epoch += 1

    # end of epoch

    consumed_time = str(
        datetime.timedelta(seconds=int(time.time() - start_time)))
    logger.info(f'End of training. Time consumed: {consumed_time}')
    logger.info('Save the latest model.')
    model.save(epoch=-1, current_iter=-1)  # -1 stands for the latest
    if opt.get('val') is not None:
        for val_name, val_loader in val_loaders.items():
            model.validation(val_loader, current_iter, tb_logger,
                         opt['val']['save_img'])
    if tb_logger:
        tb_logger.close()


if __name__ == '__main__':
    main()