|
import logging |
|
import os |
|
import torch |
|
from collections import OrderedDict |
|
from copy import deepcopy |
|
from torch.nn.parallel import DataParallel, DistributedDataParallel |
|
import sys |
|
sys.path.append(os.path.realpath(__file__)) |
|
|
|
|
|
from basicsr.models import lr_scheduler as lr_scheduler |
|
from basicsr.utils.dist_util import master_only |
|
|
|
logger = logging.getLogger('basicsr') |
|
|
|
|
|
|
|
class BaseModel(): |
|
"""Base model.""" |
|
|
|
def __init__(self, opt): |
|
self.opt = opt |
|
self.device = torch.device('cuda' if opt['num_gpu'] != 0 else 'cpu') |
|
self.is_train = opt['is_train'] |
|
self.schedulers = [] |
|
self.optimizers = [] |
|
|
|
def feed_data(self, data): |
|
pass |
|
|
|
def optimize_parameters(self): |
|
pass |
|
|
|
def get_current_visuals(self): |
|
pass |
|
|
|
def save(self, epoch, current_iter): |
|
"""Save networks and training state.""" |
|
pass |
|
|
|
def validation(self, dataloader, current_iter, tb_logger, save_img=False, rgb2bgr=True, use_image=True): |
|
"""Validation function. |
|
|
|
Args: |
|
dataloader (torch.utils.data.DataLoader): Validation dataloader. |
|
current_iter (int): Current iteration. |
|
tb_logger (tensorboard logger): Tensorboard logger. |
|
save_img (bool): Whether to save images. Default: False. |
|
rgb2bgr (bool): Whether to save images using rgb2bgr. Default: True |
|
use_image (bool): Whether to use saved images to compute metrics (PSNR, SSIM), if not, then use data directly from network' output. Default: True |
|
""" |
|
if self.opt['dist']: |
|
return self.dist_validation(dataloader, current_iter, tb_logger, save_img, rgb2bgr, use_image) |
|
else: |
|
return self.nondist_validation(dataloader, current_iter, tb_logger, |
|
save_img, rgb2bgr, use_image) |
|
|
|
def model_ema(self, decay=0.999): |
|
net_g = self.get_bare_model(self.net_g) |
|
|
|
net_g_params = dict(net_g.named_parameters()) |
|
net_g_ema_params = dict(self.net_g_ema.named_parameters()) |
|
|
|
for k in net_g_ema_params.keys(): |
|
net_g_ema_params[k].data.mul_(decay).add_( |
|
net_g_params[k].data, alpha=1 - decay) |
|
|
|
def get_current_log(self): |
|
return self.log_dict |
|
|
|
def model_to_device(self, net): |
|
"""Model to device. It also warps models with DistributedDataParallel |
|
or DataParallel. |
|
|
|
Args: |
|
net (nn.Module) |
|
""" |
|
|
|
net = net.to(self.device) |
|
if self.opt['dist']: |
|
find_unused_parameters = self.opt.get('find_unused_parameters', |
|
False) |
|
net = DistributedDataParallel( |
|
net, |
|
device_ids=[torch.cuda.current_device()], |
|
find_unused_parameters=find_unused_parameters) |
|
elif self.opt['num_gpu'] > 1: |
|
net = DataParallel(net) |
|
return net |
|
|
|
def setup_schedulers(self): |
|
"""Set up schedulers.""" |
|
train_opt = self.opt['train'] |
|
scheduler_type = train_opt['scheduler'].get('type') |
|
if scheduler_type in ['MultiStepLR', 'MultiStepRestartLR']: |
|
for optimizer in self.optimizers: |
|
self.schedulers.append( |
|
lr_scheduler.MultiStepRestartLR(optimizer, |
|
**train_opt['scheduler'])) |
|
elif scheduler_type == 'CosineAnnealingRestartLR': |
|
for optimizer in self.optimizers: |
|
self.schedulers.append( |
|
lr_scheduler.CosineAnnealingRestartLR( |
|
optimizer, **train_opt['scheduler'])) |
|
elif scheduler_type == 'CosineAnnealingWarmupRestarts': |
|
for optimizer in self.optimizers: |
|
self.schedulers.append( |
|
lr_scheduler.CosineAnnealingWarmupRestarts( |
|
optimizer, **train_opt['scheduler'])) |
|
elif scheduler_type == 'CosineAnnealingRestartCyclicLR': |
|
train_opt['scheduler'].pop('type') |
|
for optimizer in self.optimizers: |
|
self.schedulers.append( |
|
lr_scheduler.CosineAnnealingRestartCyclicLR( |
|
optimizer, **train_opt['scheduler'])) |
|
elif scheduler_type == 'TrueCosineAnnealingLR': |
|
print('..', 'cosineannealingLR') |
|
for optimizer in self.optimizers: |
|
self.schedulers.append( |
|
torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, **train_opt['scheduler'])) |
|
elif scheduler_type == 'CosineAnnealingLRWithRestart': |
|
print('..', 'CosineAnnealingLR_With_Restart') |
|
for optimizer in self.optimizers: |
|
self.schedulers.append( |
|
lr_scheduler.CosineAnnealingLRWithRestart(optimizer, **train_opt['scheduler'])) |
|
elif scheduler_type == 'LinearLR': |
|
for optimizer in self.optimizers: |
|
self.schedulers.append( |
|
lr_scheduler.LinearLR( |
|
optimizer, train_opt['total_iter'])) |
|
elif scheduler_type == 'VibrateLR': |
|
for optimizer in self.optimizers: |
|
self.schedulers.append( |
|
lr_scheduler.VibrateLR( |
|
optimizer, train_opt['total_iter'])) |
|
elif scheduler_type == 'ReduceLROnPlateau': |
|
for optimizer in self.optimizers: |
|
self.schedulers.append(torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode="min", factor=0.5, patience=6, threshold=1e-3)) |
|
else: |
|
raise NotImplementedError( |
|
f'Scheduler {scheduler_type} is not implemented yet.') |
|
|
|
def get_bare_model(self, net): |
|
"""Get bare model, especially under wrapping with |
|
DistributedDataParallel or DataParallel. |
|
""" |
|
if isinstance(net, (DataParallel, DistributedDataParallel)): |
|
net = net.module |
|
return net |
|
|
|
@master_only |
|
def print_network(self, net): |
|
"""Print the str and parameter number of a network. |
|
|
|
Args: |
|
net (nn.Module) |
|
""" |
|
if isinstance(net, (DataParallel, DistributedDataParallel)): |
|
net_cls_str = (f'{net.__class__.__name__} - ' |
|
f'{net.module.__class__.__name__}') |
|
else: |
|
net_cls_str = f'{net.__class__.__name__}' |
|
|
|
net = self.get_bare_model(net) |
|
net_str = str(net) |
|
net_params = sum(map(lambda x: x.numel(), net.parameters())) |
|
|
|
logger.info( |
|
f'Network: {net_cls_str}, with parameters: {net_params:,d}') |
|
logger.info(net_str) |
|
|
|
def _set_lr(self, lr_groups_l): |
|
"""Set learning rate for warmup. |
|
|
|
Args: |
|
lr_groups_l (list): List for lr_groups, each for an optimizer. |
|
""" |
|
for optimizer, lr_groups in zip(self.optimizers, lr_groups_l): |
|
for param_group, lr in zip(optimizer.param_groups, lr_groups): |
|
param_group['lr'] = lr |
|
|
|
def _get_init_lr(self): |
|
"""Get the initial lr, which is set by the scheduler. |
|
""" |
|
init_lr_groups_l = [] |
|
for optimizer in self.optimizers: |
|
init_lr_groups_l.append( |
|
[v['initial_lr'] for v in optimizer.param_groups]) |
|
return init_lr_groups_l |
|
|
|
def update_learning_rate(self, current_iter, warmup_iter=-1, value_scheduler=None): |
|
"""Update learning rate. |
|
|
|
Args: |
|
current_iter (int): Current iteration. |
|
warmup_iter (int): Warmup iter numbers. -1 for no warmup. |
|
Default: -1. |
|
""" |
|
if current_iter > 1: |
|
if value_scheduler is None: |
|
for scheduler in self.schedulers: |
|
scheduler.step() |
|
else: |
|
for scheduler in self.schedulers: |
|
scheduler.step(value_scheduler) |
|
|
|
if current_iter < warmup_iter: |
|
|
|
init_lr_g_l = self._get_init_lr() |
|
|
|
|
|
warm_up_lr_l = [] |
|
for init_lr_g in init_lr_g_l: |
|
warm_up_lr_l.append( |
|
[v / warmup_iter * current_iter for v in init_lr_g]) |
|
|
|
self._set_lr(warm_up_lr_l) |
|
|
|
def get_current_learning_rate(self): |
|
return [ |
|
param_group['lr'] |
|
for param_group in self.optimizers[0].param_groups |
|
] |
|
|
|
@master_only |
|
def save_network(self, net, net_label, current_iter, param_key='params', best=False): |
|
"""Save networks. |
|
|
|
Args: |
|
net (nn.Module | list[nn.Module]): Network(s) to be saved. |
|
net_label (str): Network label. |
|
current_iter (int): Current iter number. |
|
param_key (str | list[str]): The parameter key(s) to save network. |
|
Default: 'params'. |
|
""" |
|
if current_iter == -1: |
|
current_iter = 'latest' |
|
save_filename = f'{net_label}_{current_iter}.pth' if not best else f'{net_label}_best.pth' |
|
save_path = os.path.join(self.opt['path']['models'], save_filename) |
|
|
|
net = net if isinstance(net, list) else [net] |
|
param_key = param_key if isinstance(param_key, list) else [param_key] |
|
assert len(net) == len( |
|
param_key), 'The lengths of net and param_key should be the same.' |
|
|
|
save_dict = {} |
|
for net_, param_key_ in zip(net, param_key): |
|
net_ = self.get_bare_model(net_) |
|
state_dict = net_.state_dict() |
|
for key, param in state_dict.items(): |
|
if key.startswith('module.'): |
|
key = key[7:] |
|
state_dict[key] = param.cpu() |
|
save_dict[param_key_] = state_dict |
|
|
|
torch.save(save_dict, save_path) |
|
|
|
def _print_different_keys_loading(self, crt_net, load_net, strict=True): |
|
"""Print keys with differnet name or different size when loading models. |
|
|
|
1. Print keys with differnet names. |
|
2. If strict=False, print the same key but with different tensor size. |
|
It also ignore these keys with different sizes (not load). |
|
|
|
Args: |
|
crt_net (torch model): Current network. |
|
load_net (dict): Loaded network. |
|
strict (bool): Whether strictly loaded. Default: True. |
|
""" |
|
crt_net = self.get_bare_model(crt_net) |
|
crt_net = crt_net.state_dict() |
|
crt_net_keys = set(crt_net.keys()) |
|
load_net_keys = set(load_net.keys()) |
|
|
|
if crt_net_keys != load_net_keys: |
|
logger.warning('Current net - loaded net:') |
|
for v in sorted(list(crt_net_keys - load_net_keys)): |
|
logger.warning(f' {v}') |
|
logger.warning('Loaded net - current net:') |
|
for v in sorted(list(load_net_keys - crt_net_keys)): |
|
logger.warning(f' {v}') |
|
|
|
|
|
if not strict: |
|
common_keys = crt_net_keys & load_net_keys |
|
for k in common_keys: |
|
if crt_net[k].size() != load_net[k].size(): |
|
logger.warning( |
|
f'Size different, ignore [{k}]: crt_net: ' |
|
f'{crt_net[k].shape}; load_net: {load_net[k].shape}') |
|
load_net[k + '.ignore'] = load_net.pop(k) |
|
|
|
def load_network(self, net, load_path, strict=True, param_key='params'): |
|
"""Load network. |
|
|
|
Args: |
|
load_path (str): The path of networks to be loaded. |
|
net (nn.Module): Network. |
|
strict (bool): Whether strictly loaded. |
|
param_key (str): The parameter key of loaded network. If set to |
|
None, use the root 'path'. |
|
Default: 'params'. |
|
""" |
|
net = self.get_bare_model(net) |
|
logger.info( |
|
f'Loading {net.__class__.__name__} model from {load_path}.') |
|
load_net = torch.load( |
|
load_path, map_location=lambda storage, loc: storage) |
|
if param_key is not None: |
|
if param_key not in load_net and 'params' in load_net: |
|
param_key = 'params' |
|
logger.info('Loading: params_ema does not exist, use params.') |
|
load_net = load_net[param_key] |
|
print(' load net keys', load_net.keys) |
|
|
|
for k, v in deepcopy(load_net).items(): |
|
if k.startswith('module.'): |
|
load_net[k[7:]] = v |
|
load_net.pop(k) |
|
self._print_different_keys_loading(net, load_net, strict) |
|
net.load_state_dict(load_net, strict=strict) |
|
|
|
@master_only |
|
def save_training_state(self, epoch, current_iter, best=False): |
|
"""Save training states during training, which will be used for |
|
resuming. |
|
|
|
Args: |
|
epoch (int): Current epoch. |
|
current_iter (int): Current iteration. |
|
""" |
|
if current_iter != -1: |
|
epoch = 0 if best else epoch |
|
state = { |
|
'epoch': epoch, |
|
'iter': current_iter, |
|
'optimizers': [], |
|
'schedulers': [] |
|
} |
|
for o in self.optimizers: |
|
state['optimizers'].append(o.state_dict()) |
|
for s in self.schedulers: |
|
state['schedulers'].append(s.state_dict()) |
|
save_filename = f'{current_iter}.state' |
|
save_path = os.path.join(self.opt['path']['training_states'], |
|
save_filename) |
|
torch.save(state, save_path) |
|
|
|
def resume_training(self, resume_state): |
|
"""Reload the optimizers and schedulers for resumed training. |
|
|
|
Args: |
|
resume_state (dict): Resume state. |
|
""" |
|
resume_optimizers = resume_state['optimizers'] |
|
resume_schedulers = resume_state['schedulers'] |
|
assert len(resume_optimizers) == len( |
|
self.optimizers), 'Wrong lengths of optimizers' |
|
assert len(resume_schedulers) == len( |
|
self.schedulers), 'Wrong lengths of schedulers' |
|
for i, o in enumerate(resume_optimizers): |
|
self.optimizers[i].load_state_dict(o) |
|
for i, s in enumerate(resume_schedulers): |
|
self.schedulers[i].load_state_dict(s) |
|
|
|
def reduce_loss_dict(self, loss_dict): |
|
"""reduce loss dict. |
|
|
|
In distributed training, it averages the losses among different GPUs . |
|
|
|
Args: |
|
loss_dict (OrderedDict): Loss dict. |
|
""" |
|
with torch.no_grad(): |
|
if self.opt['dist']: |
|
keys = [] |
|
losses = [] |
|
for name, value in loss_dict.items(): |
|
keys.append(name) |
|
losses.append(value) |
|
losses = torch.stack(losses, 0) |
|
torch.distributed.reduce(losses, dst=0) |
|
if self.opt['rank'] == 0: |
|
losses /= self.opt['world_size'] |
|
loss_dict = {key: loss for key, loss in zip(keys, losses)} |
|
|
|
total_loss = 0. |
|
log_dict = OrderedDict() |
|
for name, value in loss_dict.items(): |
|
log_dict[name] = value.mean().item() |
|
total_loss += log_dict[name] |
|
return log_dict, total_loss |
|
|