|
import math |
|
from collections import Counter |
|
from torch.optim.lr_scheduler import _LRScheduler |
|
import torch |
|
|
|
|
|
class MultiStepRestartLR(_LRScheduler): |
|
""" MultiStep with restarts learning rate scheme. |
|
|
|
Args: |
|
optimizer (torch.nn.optimizer): Torch optimizer. |
|
milestones (list): Iterations that will decrease learning rate. |
|
gamma (float): Decrease ratio. Default: 0.1. |
|
restarts (list): Restart iterations. Default: [0]. |
|
restart_weights (list): Restart weights at each restart iteration. |
|
Default: [1]. |
|
last_epoch (int): Used in _LRScheduler. Default: -1. |
|
""" |
|
|
|
def __init__(self, |
|
optimizer, |
|
milestones, |
|
gamma=0.1, |
|
restarts=(0, ), |
|
restart_weights=(1, ), |
|
last_epoch=-1): |
|
self.milestones = Counter(milestones) |
|
self.gamma = gamma |
|
self.restarts = restarts |
|
self.restart_weights = restart_weights |
|
assert len(self.restarts) == len( |
|
self.restart_weights), 'restarts and their weights do not match.' |
|
super(MultiStepRestartLR, self).__init__(optimizer, last_epoch) |
|
|
|
def get_lr(self): |
|
if self.last_epoch in self.restarts: |
|
weight = self.restart_weights[self.restarts.index(self.last_epoch)] |
|
return [ |
|
group['initial_lr'] * weight |
|
for group in self.optimizer.param_groups |
|
] |
|
if self.last_epoch not in self.milestones: |
|
return [group['lr'] for group in self.optimizer.param_groups] |
|
return [ |
|
group['lr'] * self.gamma**self.milestones[self.last_epoch] |
|
for group in self.optimizer.param_groups |
|
] |
|
|
|
class LinearLR(_LRScheduler): |
|
""" |
|
|
|
Args: |
|
optimizer (torch.nn.optimizer): Torch optimizer. |
|
milestones (list): Iterations that will decrease learning rate. |
|
gamma (float): Decrease ratio. Default: 0.1. |
|
last_epoch (int): Used in _LRScheduler. Default: -1. |
|
""" |
|
|
|
def __init__(self, |
|
optimizer, |
|
total_iter, |
|
last_epoch=-1): |
|
self.total_iter = total_iter |
|
super(LinearLR, self).__init__(optimizer, last_epoch) |
|
|
|
def get_lr(self): |
|
process = self.last_epoch / self.total_iter |
|
weight = (1 - process) |
|
|
|
return [weight * group['initial_lr'] for group in self.optimizer.param_groups] |
|
|
|
class VibrateLR(_LRScheduler): |
|
""" |
|
|
|
Args: |
|
optimizer (torch.nn.optimizer): Torch optimizer. |
|
milestones (list): Iterations that will decrease learning rate. |
|
gamma (float): Decrease ratio. Default: 0.1. |
|
last_epoch (int): Used in _LRScheduler. Default: -1. |
|
""" |
|
|
|
def __init__(self, |
|
optimizer, |
|
total_iter, |
|
last_epoch=-1): |
|
self.total_iter = total_iter |
|
super(VibrateLR, self).__init__(optimizer, last_epoch) |
|
|
|
def get_lr(self): |
|
process = self.last_epoch / self.total_iter |
|
|
|
f = 0.1 |
|
if process < 3 / 8: |
|
f = 1 - process * 8 / 3 |
|
elif process < 5 / 8: |
|
f = 0.2 |
|
|
|
T = self.total_iter // 80 |
|
Th = T // 2 |
|
|
|
t = self.last_epoch % T |
|
|
|
f2 = t / Th |
|
if t >= Th: |
|
f2 = 2 - f2 |
|
|
|
weight = f * f2 |
|
|
|
if self.last_epoch < Th: |
|
weight = max(0.1, weight) |
|
|
|
|
|
return [weight * group['initial_lr'] for group in self.optimizer.param_groups] |
|
|
|
def get_position_from_periods(iteration, cumulative_period): |
|
"""Get the position from a period list. |
|
|
|
It will return the index of the right-closest number in the period list. |
|
For example, the cumulative_period = [100, 200, 300, 400], |
|
if iteration == 50, return 0; |
|
if iteration == 210, return 2; |
|
if iteration == 300, return 2. |
|
|
|
Args: |
|
iteration (int): Current iteration. |
|
cumulative_period (list[int]): Cumulative period list. |
|
|
|
Returns: |
|
int: The position of the right-closest number in the period list. |
|
""" |
|
for i, period in enumerate(cumulative_period): |
|
if iteration <= period: |
|
return i |
|
|
|
|
|
class CosineAnnealingRestartLR(_LRScheduler): |
|
""" Cosine annealing with restarts learning rate scheme. |
|
|
|
An example of config: |
|
periods = [10, 10, 10, 10] |
|
restart_weights = [1, 0.5, 0.5, 0.5] |
|
eta_min=1e-7 |
|
|
|
It has four cycles, each has 10 iterations. At 10th, 20th, 30th, the |
|
scheduler will restart with the weights in restart_weights. |
|
|
|
Args: |
|
optimizer (torch.nn.optimizer): Torch optimizer. |
|
periods (list): Period for each cosine anneling cycle. |
|
restart_weights (list): Restart weights at each restart iteration. |
|
Default: [1]. |
|
eta_min (float): The mimimum lr. Default: 0. |
|
last_epoch (int): Used in _LRScheduler. Default: -1. |
|
""" |
|
|
|
def __init__(self, |
|
optimizer, |
|
periods, |
|
restart_weights=(1, ), |
|
eta_min=0, |
|
last_epoch=-1): |
|
self.periods = periods |
|
self.restart_weights = restart_weights |
|
self.eta_min = eta_min |
|
assert (len(self.periods) == len(self.restart_weights) |
|
), 'periods and restart_weights should have the same length.' |
|
self.cumulative_period = [ |
|
sum(self.periods[0:i + 1]) for i in range(0, len(self.periods)) |
|
] |
|
super(CosineAnnealingRestartLR, self).__init__(optimizer, last_epoch) |
|
|
|
def get_lr(self): |
|
idx = get_position_from_periods(self.last_epoch, |
|
self.cumulative_period) |
|
current_weight = self.restart_weights[idx] |
|
nearest_restart = 0 if idx == 0 else self.cumulative_period[idx - 1] |
|
current_period = self.periods[idx] |
|
|
|
return [ |
|
self.eta_min + current_weight * 0.5 * (base_lr - self.eta_min) * |
|
(1 + math.cos(math.pi * ( |
|
(self.last_epoch - nearest_restart) / current_period))) |
|
for base_lr in self.base_lrs |
|
] |
|
|
|
class CosineAnnealingRestartCyclicLR(_LRScheduler): |
|
""" Cosine annealing with restarts learning rate scheme. |
|
An example of config: |
|
periods = [10, 10, 10, 10] |
|
restart_weights = [1, 0.5, 0.5, 0.5] |
|
eta_min=1e-7 |
|
It has four cycles, each has 10 iterations. At 10th, 20th, 30th, the |
|
scheduler will restart with the weights in restart_weights. |
|
Args: |
|
optimizer (torch.nn.optimizer): Torch optimizer. |
|
periods (list): Period for each cosine anneling cycle. |
|
restart_weights (list): Restart weights at each restart iteration. |
|
Default: [1]. |
|
eta_min (float): The mimimum lr. Default: 0. |
|
last_epoch (int): Used in _LRScheduler. Default: -1. |
|
""" |
|
|
|
def __init__(self, |
|
optimizer, |
|
periods, |
|
restart_weights=(1, ), |
|
eta_mins=(0, ), |
|
last_epoch=-1): |
|
self.periods = periods |
|
self.restart_weights = restart_weights |
|
self.eta_mins = eta_mins |
|
assert (len(self.periods) == len(self.restart_weights) |
|
), 'periods and restart_weights should have the same length.' |
|
self.cumulative_period = [ |
|
sum(self.periods[0:i + 1]) for i in range(0, len(self.periods)) |
|
] |
|
super(CosineAnnealingRestartCyclicLR, self).__init__(optimizer, last_epoch) |
|
|
|
def get_lr(self): |
|
idx = get_position_from_periods(self.last_epoch, |
|
self.cumulative_period) |
|
current_weight = self.restart_weights[idx] |
|
nearest_restart = 0 if idx == 0 else self.cumulative_period[idx - 1] |
|
current_period = self.periods[idx] |
|
eta_min = self.eta_mins[idx] |
|
|
|
return [ |
|
eta_min + current_weight * 0.5 * (base_lr - eta_min) * |
|
(1 + math.cos(math.pi * ( |
|
(self.last_epoch - nearest_restart) / current_period))) |
|
for base_lr in self.base_lrs |
|
] |
|
|