|
import cv2 |
|
import numpy as np |
|
|
|
from basicsr.metrics.metric_util import reorder_image, to_y_channel |
|
import skimage.metrics |
|
import torch |
|
|
|
|
|
def calculate_psnr(img1, |
|
img2, |
|
crop_border, |
|
input_order='HWC', |
|
test_y_channel=False): |
|
"""Calculate PSNR (Peak Signal-to-Noise Ratio). |
|
|
|
Ref: https://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio |
|
|
|
Args: |
|
img1 (ndarray/tensor): Images with range [0, 255]/[0, 1]. |
|
img2 (ndarray/tensor): Images with range [0, 255]/[0, 1]. |
|
crop_border (int): Cropped pixels in each edge of an image. These |
|
pixels are not involved in the PSNR calculation. |
|
input_order (str): Whether the input order is 'HWC' or 'CHW'. |
|
Default: 'HWC'. |
|
test_y_channel (bool): Test on Y channel of YCbCr. Default: False. |
|
|
|
Returns: |
|
float: psnr result. |
|
""" |
|
|
|
assert img1.shape == img2.shape, ( |
|
f'Image shapes are differnet: {img1.shape}, {img2.shape}.') |
|
if input_order not in ['HWC', 'CHW']: |
|
raise ValueError( |
|
f'Wrong input_order {input_order}. Supported input_orders are ' |
|
'"HWC" and "CHW"') |
|
if type(img1) == torch.Tensor: |
|
if len(img1.shape) == 4: |
|
img1 = img1.squeeze(0) |
|
img1 = img1.detach().cpu().numpy().transpose(1,2,0) |
|
if type(img2) == torch.Tensor: |
|
if len(img2.shape) == 4: |
|
img2 = img2.squeeze(0) |
|
img2 = img2.detach().cpu().numpy().transpose(1,2,0) |
|
|
|
img1 = reorder_image(img1, input_order=input_order) |
|
img2 = reorder_image(img2, input_order=input_order) |
|
img1 = img1.astype(np.float64) |
|
img2 = img2.astype(np.float64) |
|
|
|
if crop_border != 0: |
|
img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] |
|
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] |
|
|
|
if test_y_channel: |
|
img1 = to_y_channel(img1) |
|
img2 = to_y_channel(img2) |
|
|
|
mse = np.mean((img1 - img2)**2) |
|
if mse == 0: |
|
return float('inf') |
|
max_value = 1. if img1.max() <= 1 else 255. |
|
return 20. * np.log10(max_value / np.sqrt(mse)) |
|
|
|
|
|
def _ssim(img1, img2): |
|
"""Calculate SSIM (structural similarity) for one channel images. |
|
|
|
It is called by func:`calculate_ssim`. |
|
|
|
Args: |
|
img1 (ndarray): Images with range [0, 255] with order 'HWC'. |
|
img2 (ndarray): Images with range [0, 255] with order 'HWC'. |
|
|
|
Returns: |
|
float: ssim result. |
|
""" |
|
|
|
C1 = (0.01 * 255)**2 |
|
C2 = (0.03 * 255)**2 |
|
|
|
img1 = img1.astype(np.float64) |
|
img2 = img2.astype(np.float64) |
|
kernel = cv2.getGaussianKernel(11, 1.5) |
|
window = np.outer(kernel, kernel.transpose()) |
|
|
|
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] |
|
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] |
|
mu1_sq = mu1**2 |
|
mu2_sq = mu2**2 |
|
mu1_mu2 = mu1 * mu2 |
|
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq |
|
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq |
|
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 |
|
|
|
ssim_map = ((2 * mu1_mu2 + C1) * |
|
(2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * |
|
(sigma1_sq + sigma2_sq + C2)) |
|
return ssim_map.mean() |
|
|
|
def prepare_for_ssim(img, k): |
|
import torch |
|
with torch.no_grad(): |
|
img = torch.from_numpy(img).unsqueeze(0).unsqueeze(0).float() |
|
conv = torch.nn.Conv2d(1, 1, k, stride=1, padding=k//2, padding_mode='reflect') |
|
conv.weight.requires_grad = False |
|
conv.weight[:, :, :, :] = 1. / (k * k) |
|
|
|
img = conv(img) |
|
|
|
img = img.squeeze(0).squeeze(0) |
|
img = img[0::k, 0::k] |
|
return img.detach().cpu().numpy() |
|
|
|
def prepare_for_ssim_rgb(img, k): |
|
import torch |
|
with torch.no_grad(): |
|
img = torch.from_numpy(img).float() |
|
|
|
conv = torch.nn.Conv2d(1, 1, k, stride=1, padding=k // 2, padding_mode='reflect') |
|
conv.weight.requires_grad = False |
|
conv.weight[:, :, :, :] = 1. / (k * k) |
|
|
|
new_img = [] |
|
|
|
for i in range(3): |
|
new_img.append(conv(img[:, :, i].unsqueeze(0).unsqueeze(0)).squeeze(0).squeeze(0)[0::k, 0::k]) |
|
|
|
return torch.stack(new_img, dim=2).detach().cpu().numpy() |
|
|
|
def _3d_gaussian_calculator(img, conv3d): |
|
out = conv3d(img.unsqueeze(0).unsqueeze(0)).squeeze(0).squeeze(0) |
|
return out |
|
|
|
def _generate_3d_gaussian_kernel(): |
|
kernel = cv2.getGaussianKernel(11, 1.5) |
|
window = np.outer(kernel, kernel.transpose()) |
|
kernel_3 = cv2.getGaussianKernel(11, 1.5) |
|
kernel = torch.tensor(np.stack([window * k for k in kernel_3], axis=0)) |
|
conv3d = torch.nn.Conv3d(1, 1, (11, 11, 11), stride=1, padding=(5, 5, 5), bias=False, padding_mode='replicate') |
|
conv3d.weight.requires_grad = False |
|
conv3d.weight[0, 0, :, :, :] = kernel |
|
return conv3d |
|
|
|
def _ssim_3d(img1, img2, max_value): |
|
assert len(img1.shape) == 3 and len(img2.shape) == 3 |
|
"""Calculate SSIM (structural similarity) for one channel images. |
|
|
|
It is called by func:`calculate_ssim`. |
|
|
|
Args: |
|
img1 (ndarray): Images with range [0, 255]/[0, 1] with order 'HWC'. |
|
img2 (ndarray): Images with range [0, 255]/[0, 1] with order 'HWC'. |
|
|
|
Returns: |
|
float: ssim result. |
|
""" |
|
C1 = (0.01 * max_value) ** 2 |
|
C2 = (0.03 * max_value) ** 2 |
|
img1 = img1.astype(np.float64) |
|
img2 = img2.astype(np.float64) |
|
|
|
kernel = _generate_3d_gaussian_kernel().cuda() |
|
|
|
img1 = torch.tensor(img1).float().cuda() |
|
img2 = torch.tensor(img2).float().cuda() |
|
|
|
|
|
mu1 = _3d_gaussian_calculator(img1, kernel) |
|
mu2 = _3d_gaussian_calculator(img2, kernel) |
|
|
|
mu1_sq = mu1 ** 2 |
|
mu2_sq = mu2 ** 2 |
|
mu1_mu2 = mu1 * mu2 |
|
sigma1_sq = _3d_gaussian_calculator(img1 ** 2, kernel) - mu1_sq |
|
sigma2_sq = _3d_gaussian_calculator(img2 ** 2, kernel) - mu2_sq |
|
sigma12 = _3d_gaussian_calculator(img1*img2, kernel) - mu1_mu2 |
|
|
|
ssim_map = ((2 * mu1_mu2 + C1) * |
|
(2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * |
|
(sigma1_sq + sigma2_sq + C2)) |
|
return float(ssim_map.mean()) |
|
|
|
def _ssim_cly(img1, img2): |
|
assert len(img1.shape) == 2 and len(img2.shape) == 2 |
|
"""Calculate SSIM (structural similarity) for one channel images. |
|
|
|
It is called by func:`calculate_ssim`. |
|
|
|
Args: |
|
img1 (ndarray): Images with range [0, 255] with order 'HWC'. |
|
img2 (ndarray): Images with range [0, 255] with order 'HWC'. |
|
|
|
Returns: |
|
float: ssim result. |
|
""" |
|
|
|
C1 = (0.01 * 255)**2 |
|
C2 = (0.03 * 255)**2 |
|
img1 = img1.astype(np.float64) |
|
img2 = img2.astype(np.float64) |
|
|
|
kernel = cv2.getGaussianKernel(11, 1.5) |
|
|
|
window = np.outer(kernel, kernel.transpose()) |
|
|
|
bt = cv2.BORDER_REPLICATE |
|
|
|
mu1 = cv2.filter2D(img1, -1, window, borderType=bt) |
|
mu2 = cv2.filter2D(img2, -1, window,borderType=bt) |
|
|
|
mu1_sq = mu1**2 |
|
mu2_sq = mu2**2 |
|
mu1_mu2 = mu1 * mu2 |
|
sigma1_sq = cv2.filter2D(img1**2, -1, window, borderType=bt) - mu1_sq |
|
sigma2_sq = cv2.filter2D(img2**2, -1, window, borderType=bt) - mu2_sq |
|
sigma12 = cv2.filter2D(img1 * img2, -1, window, borderType=bt) - mu1_mu2 |
|
|
|
ssim_map = ((2 * mu1_mu2 + C1) * |
|
(2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * |
|
(sigma1_sq + sigma2_sq + C2)) |
|
return ssim_map.mean() |
|
|
|
|
|
def calculate_ssim(img1, |
|
img2, |
|
crop_border, |
|
input_order='HWC', |
|
test_y_channel=False): |
|
"""Calculate SSIM (structural similarity). |
|
|
|
Ref: |
|
Image quality assessment: From error visibility to structural similarity |
|
|
|
The results are the same as that of the official released MATLAB code in |
|
https://ece.uwaterloo.ca/~z70wang/research/ssim/. |
|
|
|
For three-channel images, SSIM is calculated for each channel and then |
|
averaged. |
|
|
|
Args: |
|
img1 (ndarray): Images with range [0, 255]. |
|
img2 (ndarray): Images with range [0, 255]. |
|
crop_border (int): Cropped pixels in each edge of an image. These |
|
pixels are not involved in the SSIM calculation. |
|
input_order (str): Whether the input order is 'HWC' or 'CHW'. |
|
Default: 'HWC'. |
|
test_y_channel (bool): Test on Y channel of YCbCr. Default: False. |
|
|
|
Returns: |
|
float: ssim result. |
|
""" |
|
|
|
assert img1.shape == img2.shape, ( |
|
f'Image shapes are differnet: {img1.shape}, {img2.shape}.') |
|
if input_order not in ['HWC', 'CHW']: |
|
raise ValueError( |
|
f'Wrong input_order {input_order}. Supported input_orders are ' |
|
'"HWC" and "CHW"') |
|
|
|
if type(img1) == torch.Tensor: |
|
if len(img1.shape) == 4: |
|
img1 = img1.squeeze(0) |
|
img1 = img1.detach().cpu().numpy().transpose(1,2,0) |
|
if type(img2) == torch.Tensor: |
|
if len(img2.shape) == 4: |
|
img2 = img2.squeeze(0) |
|
img2 = img2.detach().cpu().numpy().transpose(1,2,0) |
|
|
|
img1 = reorder_image(img1, input_order=input_order) |
|
img2 = reorder_image(img2, input_order=input_order) |
|
|
|
img1 = img1.astype(np.float64) |
|
img2 = img2.astype(np.float64) |
|
|
|
if crop_border != 0: |
|
img1 = img1[crop_border:-crop_border, crop_border:-crop_border, ...] |
|
img2 = img2[crop_border:-crop_border, crop_border:-crop_border, ...] |
|
|
|
if test_y_channel: |
|
img1 = to_y_channel(img1) |
|
img2 = to_y_channel(img2) |
|
return _ssim_cly(img1[..., 0], img2[..., 0]) |
|
|
|
|
|
ssims = [] |
|
|
|
|
|
|
|
|
|
|
|
max_value = 1 if img1.max() <= 1 else 255 |
|
with torch.no_grad(): |
|
final_ssim = _ssim_3d(img1, img2, max_value) |
|
ssims.append(final_ssim) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return np.array(ssims).mean() |
|
|