# Author: Tobias Plötz, TU Darmstadt (tobias.ploetz@visinf.tu-darmstadt.de) # This file is part of the implementation as described in the CVPR 2017 paper: # Tobias Plötz and Stefan Roth, Benchmarking Denoising Algorithms with Real Photographs. # Please see the file LICENSE.txt for the license governing this code. import numpy as np import scipy.io as sio import os import h5py def bundle_submissions_raw(submission_folder,session): ''' Bundles submission data for raw denoising submission_folder Folder where denoised images reside Output is written to /bundled/. Please submit the content of this folder. ''' out_folder = os.path.join(submission_folder, session) # out_folder = os.path.join(submission_folder, "bundled/") try: os.mkdir(out_folder) except:pass israw = True eval_version="1.0" for i in range(50): Idenoised = np.zeros((20,), dtype=np.object) for bb in range(20): filename = '%04d_%02d.mat'%(i+1,bb+1) s = sio.loadmat(os.path.join(submission_folder,filename)) Idenoised_crop = s["Idenoised_crop"] Idenoised[bb] = Idenoised_crop filename = '%04d.mat'%(i+1) sio.savemat(os.path.join(out_folder, filename), {"Idenoised": Idenoised, "israw": israw, "eval_version": eval_version}, ) def bundle_submissions_srgb(submission_folder,session): ''' Bundles submission data for sRGB denoising submission_folder Folder where denoised images reside Output is written to /bundled/. Please submit the content of this folder. ''' out_folder = os.path.join(submission_folder, session) # out_folder = os.path.join(submission_folder, "bundled/") try: os.mkdir(out_folder) except:pass israw = False eval_version="1.0" for i in range(50): Idenoised = np.zeros((20,), dtype=np.object) for bb in range(20): filename = '%04d_%02d.mat'%(i+1,bb+1) s = sio.loadmat(os.path.join(submission_folder,filename)) Idenoised_crop = s["Idenoised_crop"] Idenoised[bb] = Idenoised_crop filename = '%04d.mat'%(i+1) sio.savemat(os.path.join(out_folder, filename), {"Idenoised": Idenoised, "israw": israw, "eval_version": eval_version}, ) def bundle_submissions_srgb_v1(submission_folder,session): ''' Bundles submission data for sRGB denoising submission_folder Folder where denoised images reside Output is written to /bundled/. Please submit the content of this folder. ''' out_folder = os.path.join(submission_folder, session) # out_folder = os.path.join(submission_folder, "bundled/") try: os.mkdir(out_folder) except:pass israw = False eval_version="1.0" for i in range(50): Idenoised = np.zeros((20,), dtype=np.object) for bb in range(20): filename = '%04d_%d.mat'%(i+1,bb+1) s = sio.loadmat(os.path.join(submission_folder,filename)) Idenoised_crop = s["Idenoised_crop"] Idenoised[bb] = Idenoised_crop filename = '%04d.mat'%(i+1) sio.savemat(os.path.join(out_folder, filename), {"Idenoised": Idenoised, "israw": israw, "eval_version": eval_version}, )