import importlib import numpy as np import random import torch import torch.utils.data from functools import partial from os import path as osp from data.prefetch_dataloader import PrefetchDataLoader from utils import get_root_logger, scandir from utils.dist_util import get_dist_info __all__ = ['create_dataset', 'create_dataloader'] # automatically scan and import dataset modules # scan all the files under the data folder with '_dataset' in file names data_folder = osp.dirname(osp.abspath(__file__)) dataset_filenames = [ osp.splitext(osp.basename(v))[0] for v in scandir(data_folder) if v.endswith('_dataset.py') ] # import all the dataset modules _dataset_modules = [ importlib.import_module(f'data.{file_name}') for file_name in dataset_filenames ] def create_dataset(dataset_opt): """Create dataset. Args: dataset_opt (dict): Configuration for dataset. It constains: name (str): Dataset name. type (str): Dataset type. """ dataset_type = dataset_opt['type'] # dynamic instantiation for module in _dataset_modules: dataset_cls = getattr(module, dataset_type, None) if dataset_cls is not None: break if dataset_cls is None: raise ValueError(f'Dataset {dataset_type} is not found.') dataset = dataset_cls(dataset_opt) logger = get_root_logger() logger.info( f'Dataset {dataset.__class__.__name__} - {dataset_opt["name"]} ' 'is created.') return dataset def create_dataloader(dataset, dataset_opt, num_gpu=1, dist=False, sampler=None, seed=None): """Create dataloader. Args: dataset (torch.utils.data.Dataset): Dataset. dataset_opt (dict): Dataset options. It contains the following keys: phase (str): 'train' or 'val'. num_worker_per_gpu (int): Number of workers for each GPU. batch_size_per_gpu (int): Training batch size for each GPU. num_gpu (int): Number of GPUs. Used only in the train phase. Default: 1. dist (bool): Whether in distributed training. Used only in the train phase. Default: False. sampler (torch.utils.data.sampler): Data sampler. Default: None. seed (int | None): Seed. Default: None """ phase = dataset_opt['phase'] rank, _ = get_dist_info() if phase == 'train': if dist: # distributed training batch_size = dataset_opt['batch_size_per_gpu'] num_workers = dataset_opt['num_worker_per_gpu'] else: # non-distributed training multiplier = 1 if num_gpu == 0 else num_gpu batch_size = dataset_opt['batch_size_per_gpu'] * multiplier num_workers = dataset_opt['num_worker_per_gpu'] * multiplier dataloader_args = dict( dataset=dataset, batch_size=batch_size, shuffle=False, num_workers=num_workers, sampler=sampler, drop_last=True) if sampler is None: dataloader_args['shuffle'] = True dataloader_args['worker_init_fn'] = partial( worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) if seed is not None else None elif phase in ['val', 'test']: # validation dataloader_args = dict( dataset=dataset, batch_size=1, shuffle=False, num_workers=0) else: raise ValueError(f'Wrong dataset phase: {phase}. ' "Supported ones are 'train', 'val' and 'test'.") dataloader_args['pin_memory'] = dataset_opt.get('pin_memory', False) prefetch_mode = dataset_opt.get('prefetch_mode') if prefetch_mode == 'cpu': # CPUPrefetcher num_prefetch_queue = dataset_opt.get('num_prefetch_queue', 1) logger = get_root_logger() logger.info(f'Use {prefetch_mode} prefetch dataloader: ' f'num_prefetch_queue = {num_prefetch_queue}') return PrefetchDataLoader( num_prefetch_queue=num_prefetch_queue, **dataloader_args) else: # prefetch_mode=None: Normal dataloader # prefetch_mode='cuda': dataloader for CUDAPrefetcher return torch.utils.data.DataLoader(**dataloader_args) def worker_init_fn(worker_id, num_workers, rank, seed): # Set the worker seed to num_workers * rank + worker_id + seed worker_seed = num_workers * rank + worker_id + seed np.random.seed(worker_seed) random.seed(worker_seed)