|
|
|
import torch |
|
import sentencepiece |
|
import jieba |
|
import numpy as np |
|
|
|
from transformers.tokenization_utils import PreTrainedTokenizer |
|
|
|
|
|
class GPTPanguTokenizer(PreTrainedTokenizer): |
|
|
|
vocab_files_names = { |
|
"model_file": "vocab.model" |
|
} |
|
|
|
def __init__( |
|
self, |
|
model_file, |
|
**kwargs |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.sp = sentencepiece.SentencePieceProcessor() |
|
self.sp.Load(model_file=model_file) |
|
self.translator = str.maketrans(" \n", "\u2582\u2583") |
|
|
|
|
|
|
|
|
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): |
|
""" |
|
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and |
|
adding special tokens. A BERT sequence has the following format: |
|
|
|
- single sequence: `[CLS] X [SEP]` |
|
- pair of sequences: `[CLS] A [SEP] B [SEP]` |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs to which the special tokens will be added. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
|
|
Returns: |
|
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. |
|
""" |
|
if self.bos_token_id is not None: |
|
if token_ids_1 is None: |
|
return [self.bos_token_id] + token_ids_0 + [self.eos_token_id] |
|
bos = [self.bos_token_id] |
|
sep = [self.sep_token_id] |
|
eos = [self.eos_token_id] |
|
return bos + token_ids_0 + sep + token_ids_1 + eos |
|
else: |
|
if token_ids_1 is None: |
|
return token_ids_0 + [self.eos_token_id] |
|
sep = [self.sep_token_id] |
|
eos = [self.eos_token_id] |
|
return token_ids_0 + sep + token_ids_1 + eos |
|
|
|
def tokenize(self, text, **kwargs): |
|
""" Tokenize a string. """ |
|
seg_list = [x.translate(self.translator) for x in jieba.cut(text, cut_all=False)] |
|
return seg_list |
|
|
|
def convert_tokens_to_ids(self, tokens): |
|
if tokens is None: |
|
return None |
|
|
|
if isinstance(tokens, str): |
|
return self._convert_token_to_id_with_added_voc(tokens) |
|
|
|
new_seg = " ".join(tokens) |
|
return self.sp.encode(new_seg) |
|
|
|
|
|
def _convert_token_to_id(self, token): |
|
return self.sp.piece_to_id(token) |
|
|
|
def _convert_id_to_token(self, index): |
|
return self.sp.id_to_piece(index) |
|
|
|
def convert_ids_to_tokens(self, ids): |
|
return self.decode(ids) |
|
|
|
def decode(self, tokens, **kwargs): |
|
if isinstance(tokens, torch.Tensor) or isinstance(tokens, np.ndarray): |
|
tokens = tokens.tolist() |
|
|
|
if kwargs.get('skip_special_tokens', None) is True: |
|
tokens = [token for token in tokens if token not in self.all_special_ids] |
|
text = self.sp.decode(tokens) |
|
if isinstance(text, list): |
|
text = text[0] |
|
text = text.replace(' ', '').replace('\u2582', ' ').replace('\u2583', '\n') |
|
return text |
|
|
|
@property |
|
def vocab_size(self) -> int: |
|
""" |
|
`int`: Size of the base vocabulary (without the added tokens). |
|
""" |
|
return len(self.sp) |
|
|