anton-l HF staff commited on
Commit
e2e5748
·
1 Parent(s): f820956

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -0
README.md ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ datasets:
4
+ - superb
5
+ tags:
6
+ - speech
7
+ - hubert
8
+ - s3prl
9
+ license: apache-2.0
10
+ ---
11
+
12
+ # Hubert-Base for Keyword Spotting
13
+
14
+ [S3PRL speech toolkit](https://github.com/s3prl/s3prl)
15
+ [Facebook's Hubert](https://ai.facebook.com/blog/hubert-self-supervised-representation-learning-for-speech-recognition-generation-and-compression)
16
+
17
+ The base model is pretrained on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
18
+ The classification head is trained using the Keyword Spotting part of the SUPERB dataset.
19
+
20
+ [Paper](https://arxiv.org/abs/2105.01051)
21
+
22
+ Authors: Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Jeff Lai, Kushal Lakhotia, Yist Y. Lin, Andy T. Liu, Jiatong Shi, Xuankai Chang, Guan-Ting Lin, Tzu-Hsien Huang, Wei-Cheng Tseng, Ko-tik Lee, Da-Rong Liu, Zili Huang, Shuyan Dong, Shang-Wen Li, Shinji Watanabe, Abdelrahman Mohamed, Hung-yi Lee
23
+
24
+ **Abstract**
25
+ Self-supervised learning (SSL) has proven vital for advancing research in natural language processing (NLP) and computer vision (CV). The paradigm pretrains a shared model on large volumes of unlabeled data and achieves state-of-the-art (SOTA) for various tasks with minimal adaptation. However, the speech processing community lacks a similar setup to systematically explore the paradigm. To bridge this gap, we introduce Speech processing Universal PERformance Benchmark (SUPERB). SUPERB is a leaderboard to benchmark the performance of a shared model across a wide range of speech processing tasks with minimal architecture changes and labeled data. Among multiple usages of the shared model, we especially focus on extracting the representation learned from SSL due to its preferable re-usability. We present a simple framework to solve SUPERB tasks by learning task-specialized lightweight prediction heads on top of the frozen shared model. Our results demonstrate that the framework is promising as SSL representations show competitive generalizability and accessibility across SUPERB tasks. We release SUPERB as a challenge with a leaderboard and a benchmark toolkit to fuel the research in representation learning and general speech processing.
26
+
27
+ The original model can be found under https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/speech_commands.
28
+
29
+ # Usage