speech-test commited on
Commit
9213b6e
1 Parent(s): 43b1ae7

Update info

Browse files
Files changed (1) hide show
  1. README.md +96 -0
README.md ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ datasets:
4
+ - superb
5
+ tags:
6
+ - speech
7
+ - audio
8
+ - wav2vec2
9
+ - audio-classification
10
+ license: apache-2.0
11
+ ---
12
+
13
+ # Wav2Vec2-Base for Keyword Spotting
14
+
15
+ ## Model description
16
+
17
+ This is a ported version of
18
+ [S3PRL's Wav2Vec2 for the SUPERB Keyword Spotting task](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream/speech_commands).
19
+
20
+ The base model is [wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base), which is pretrained on 16kHz
21
+ sampled speech audio. When using the model make sure that your speech input is also sampled at 16Khz.
22
+
23
+ For more information refer to [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051)
24
+
25
+ ## Task and dataset description
26
+
27
+ Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of
28
+ words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and
29
+ inference time are all crucial. SUPERB uses the widely used
30
+ [Speech Commands dataset v1.0](https://www.tensorflow.org/datasets/catalog/speech_commands) for the task.
31
+ The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the
32
+ false positive.
33
+
34
+ For the original model's training and evaluation instructions refer to the
35
+ [S3PRL downstream task README](https://github.com/s3prl/s3prl/tree/master/s3prl/downstream#ks-keyword-spotting).
36
+
37
+
38
+ ## Usage examples
39
+
40
+ You can use the model via the Audio Classification pipeline:
41
+ ```python
42
+ from datasets import load_dataset
43
+ from transformers import pipeline
44
+
45
+ dataset = load_dataset("anton-l/superb_demo", "ks", split="test")
46
+
47
+ classifier = pipeline("audio-classification", model="superb/wav2vec2-base-superb-ks")
48
+ labels = classifier(dataset[0]["file"], top_k=5)
49
+ ```
50
+
51
+ Or use the model directly:
52
+ ```python
53
+ import torch
54
+ from datasets import load_dataset
55
+ from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2FeatureExtractor
56
+ from torchaudio.sox_effects import apply_effects_file
57
+
58
+ effects = [["channels", "1"], ["rate", "16000"], ["gain", "-3.0"]]
59
+ def map_to_array(example):
60
+ speech, _ = apply_effects_file(example["file"], effects)
61
+ example["speech"] = speech.squeeze(0).numpy()
62
+ return example
63
+
64
+ # load a demo dataset and read audio files
65
+ dataset = load_dataset("anton-l/superb_demo", "ks", split="test")
66
+ dataset = dataset.map(map_to_array)
67
+
68
+ model = Wav2Vec2ForSequenceClassification.from_pretrained("superb/wav2vec2-base-superb-ks")
69
+ feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("superb/wav2vec2-base-superb-ks")
70
+
71
+ # compute attention masks and normalize the waveform if needed
72
+ inputs = feature_extractor(dataset[:4]["speech"], sampling_rate=16000, padding=True, return_tensors="pt")
73
+
74
+ logits = model(**inputs).logits
75
+ predicted_ids = torch.argmax(logits, dim=-1)
76
+ labels = [model.config.id2label[_id] for _id in predicted_ids.tolist()]
77
+ ```
78
+
79
+ ## Eval results
80
+
81
+ The evaluation metric is accuracy.
82
+
83
+ | | **s3prl** | **transformers** |
84
+ |--------|-----------|------------------|
85
+ |**test**| `0.9623` | `0.9643` |
86
+
87
+ ### BibTeX entry and citation info
88
+
89
+ ```bibtex
90
+ @article{yang2021superb,
91
+ title={SUPERB: Speech processing Universal PERformance Benchmark},
92
+ author={Yang, Shu-wen and Chi, Po-Han and Chuang, Yung-Sung and Lai, Cheng-I Jeff and Lakhotia, Kushal and Lin, Yist Y and Liu, Andy T and Shi, Jiatong and Chang, Xuankai and Lin, Guan-Ting and others},
93
+ journal={arXiv preprint arXiv:2105.01051},
94
+ year={2021}
95
+ }
96
+ ```