uploading remaining files
Browse files- model_index.json +10 -0
- pipeline.py +375 -0
- scheduler/scheduler_config.json +24 -0
- text_encoder/config.json +25 -0
- text_encoder/model.safetensors +3 -0
- tokenizer/merges.txt +0 -0
- tokenizer/special_tokens_map.json +24 -0
- tokenizer/tokenizer_config.json +30 -0
- tokenizer/vocab.json +0 -0
- vae/config.json +38 -0
- vae/diffusion_pytorch_model.safetensors +3 -0
model_index.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "SuperDiffPipeline",
|
| 3 |
+
"_diffusers_version": "0.31.0",
|
| 4 |
+
"batch_size": null,
|
| 5 |
+
"device": "cuda",
|
| 6 |
+
"guidance_scale": null,
|
| 7 |
+
"lift": null,
|
| 8 |
+
"num_inference_steps": null,
|
| 9 |
+
"seed": null
|
| 10 |
+
}
|
pipeline.py
ADDED
|
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
from typing import Callable, Dict, List, Optional
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from diffusers import DiffusionPipeline
|
| 6 |
+
from diffusers.configuration_utils import ConfigMixin
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class SuperDiffPipeline(DiffusionPipeline, ConfigMixin):
|
| 10 |
+
"""SuperDiffPipeline."""
|
| 11 |
+
|
| 12 |
+
def __init__(self, model: Callable, vae: Callable, text_encoder: Callable, scheduler: Callable, tokenizer: Callable, **kwargs) -> None:
|
| 13 |
+
"""__init__.
|
| 14 |
+
|
| 15 |
+
Parameters
|
| 16 |
+
----------
|
| 17 |
+
model : Callable
|
| 18 |
+
model
|
| 19 |
+
vae : Callable
|
| 20 |
+
vae
|
| 21 |
+
text_encoder : Callable
|
| 22 |
+
text_encoder
|
| 23 |
+
scheduler : Callable
|
| 24 |
+
scheduler
|
| 25 |
+
tokenizer : Callable
|
| 26 |
+
tokenizer
|
| 27 |
+
kwargs :
|
| 28 |
+
kwargs
|
| 29 |
+
|
| 30 |
+
Returns
|
| 31 |
+
-------
|
| 32 |
+
None
|
| 33 |
+
|
| 34 |
+
"""
|
| 35 |
+
super().__init__()
|
| 36 |
+
self.model = model
|
| 37 |
+
self.vae = vae
|
| 38 |
+
self.text_encoder = text_encoder
|
| 39 |
+
self.tokenizer = tokenizer
|
| 40 |
+
self.scheduler = scheduler
|
| 41 |
+
|
| 42 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 43 |
+
|
| 44 |
+
self.vae.to(device)
|
| 45 |
+
self.model.to(device)
|
| 46 |
+
self.text_encoder.to(device)
|
| 47 |
+
|
| 48 |
+
self.register_to_config(
|
| 49 |
+
#model=model,
|
| 50 |
+
#vae=vae,
|
| 51 |
+
#tokenizer=tokenizer,
|
| 52 |
+
#text_encoder=text_encoder,
|
| 53 |
+
#scheduler=scheduler,
|
| 54 |
+
device=device,
|
| 55 |
+
batch_size=None,
|
| 56 |
+
num_inference_steps=None,
|
| 57 |
+
guidance_scale=None,
|
| 58 |
+
lift=None,
|
| 59 |
+
seed=None,
|
| 60 |
+
)
|
| 61 |
+
|
| 62 |
+
@torch.no_grad
|
| 63 |
+
def get_batch(self, latents: Callable, nrow: int, ncol: int) -> Callable:
|
| 64 |
+
"""get_batch.
|
| 65 |
+
|
| 66 |
+
Parameters
|
| 67 |
+
----------
|
| 68 |
+
latents : Callable
|
| 69 |
+
latents
|
| 70 |
+
nrow : int
|
| 71 |
+
nrow
|
| 72 |
+
ncol : int
|
| 73 |
+
ncol
|
| 74 |
+
|
| 75 |
+
Returns
|
| 76 |
+
-------
|
| 77 |
+
Callable
|
| 78 |
+
|
| 79 |
+
"""
|
| 80 |
+
image = self.vae.decode(
|
| 81 |
+
latents / self.vae.config.scaling_factor, return_dict=False
|
| 82 |
+
)[0]
|
| 83 |
+
image = (image / 2 + 0.5).clamp(0, 1).squeeze()
|
| 84 |
+
if len(image.shape) < 4:
|
| 85 |
+
image = image.unsqueeze(0)
|
| 86 |
+
image = (image.permute(0, 2, 3, 1) * 255).to(torch.uint8)
|
| 87 |
+
return image
|
| 88 |
+
|
| 89 |
+
@torch.no_grad
|
| 90 |
+
def get_text_embedding(self, prompt: str) -> Callable:
|
| 91 |
+
"""get_text_embedding.
|
| 92 |
+
|
| 93 |
+
Parameters
|
| 94 |
+
----------
|
| 95 |
+
prompt : str
|
| 96 |
+
prompt
|
| 97 |
+
|
| 98 |
+
Returns
|
| 99 |
+
-------
|
| 100 |
+
Callable
|
| 101 |
+
|
| 102 |
+
"""
|
| 103 |
+
text_input = self.tokenizer(
|
| 104 |
+
prompt,
|
| 105 |
+
padding="max_length",
|
| 106 |
+
max_length=self.tokenizer.model_max_length,
|
| 107 |
+
truncation=True,
|
| 108 |
+
return_tensors="pt",
|
| 109 |
+
)
|
| 110 |
+
return self.text_encoder(text_input.input_ids.to(self.device))[0]
|
| 111 |
+
|
| 112 |
+
@torch.no_grad
|
| 113 |
+
def get_vel(self, t: float, sigma: float, latents: Callable, embeddings: Callable):
|
| 114 |
+
"""get_vel.
|
| 115 |
+
|
| 116 |
+
Parameters
|
| 117 |
+
----------
|
| 118 |
+
t : float
|
| 119 |
+
t
|
| 120 |
+
sigma : float
|
| 121 |
+
sigma
|
| 122 |
+
latents : Callable
|
| 123 |
+
latents
|
| 124 |
+
embeddings : Callable
|
| 125 |
+
embeddings
|
| 126 |
+
"""
|
| 127 |
+
def v(_x, _e): return self.model(
|
| 128 |
+
_x / ((sigma**2 + 1) ** 0.5), t, encoder_hidden_states=_e
|
| 129 |
+
).sample
|
| 130 |
+
embeds = torch.cat(embeddings)
|
| 131 |
+
latent_input = latents
|
| 132 |
+
vel = v(latent_input, embeds)
|
| 133 |
+
return vel
|
| 134 |
+
|
| 135 |
+
def preprocess(
|
| 136 |
+
self,
|
| 137 |
+
prompt_1: str,
|
| 138 |
+
prompt_2: str,
|
| 139 |
+
seed: int = None,
|
| 140 |
+
num_inference_steps: int = 1000,
|
| 141 |
+
batch_size: int = 1,
|
| 142 |
+
lift: int = 0.0,
|
| 143 |
+
height: int = 512,
|
| 144 |
+
width: int = 512,
|
| 145 |
+
guidance_scale: int = 7.5,
|
| 146 |
+
) -> Callable:
|
| 147 |
+
"""preprocess.
|
| 148 |
+
|
| 149 |
+
Parameters
|
| 150 |
+
----------
|
| 151 |
+
prompt_1 : str
|
| 152 |
+
prompt_1
|
| 153 |
+
prompt_2 : str
|
| 154 |
+
prompt_2
|
| 155 |
+
seed : int
|
| 156 |
+
seed
|
| 157 |
+
num_inference_steps : int
|
| 158 |
+
num_inference_steps
|
| 159 |
+
batch_size : int
|
| 160 |
+
batch_size
|
| 161 |
+
lift : int
|
| 162 |
+
lift
|
| 163 |
+
height : int
|
| 164 |
+
height
|
| 165 |
+
width : int
|
| 166 |
+
width
|
| 167 |
+
guidance_scale : int
|
| 168 |
+
guidance_scale
|
| 169 |
+
|
| 170 |
+
Returns
|
| 171 |
+
-------
|
| 172 |
+
Callable
|
| 173 |
+
|
| 174 |
+
"""
|
| 175 |
+
# Tokenize the input
|
| 176 |
+
self.batch_size = batch_size
|
| 177 |
+
self.num_inference_steps = num_inference_steps
|
| 178 |
+
self.guidance_scale = guidance_scale
|
| 179 |
+
self.lift = lift
|
| 180 |
+
self.seed = seed
|
| 181 |
+
if self.seed is None:
|
| 182 |
+
self.seed = random.randint(0, 2**32 - 1)
|
| 183 |
+
obj_prompt = [prompt_1]
|
| 184 |
+
bg_prompt = [prompt_2]
|
| 185 |
+
obj_embeddings = self.get_text_embedding(obj_prompt * batch_size)
|
| 186 |
+
bg_embeddings = self.get_text_embedding(bg_prompt * batch_size)
|
| 187 |
+
|
| 188 |
+
uncond_embeddings = self.get_text_embedding([""] * batch_size)
|
| 189 |
+
|
| 190 |
+
generator = torch.cuda.manual_seed(
|
| 191 |
+
self.seed
|
| 192 |
+
) # Seed generator to create the initial latent noise
|
| 193 |
+
latents = torch.randn(
|
| 194 |
+
(batch_size, self.model.config.in_channels, height // 8, width // 8),
|
| 195 |
+
generator=generator,
|
| 196 |
+
device=self.device,
|
| 197 |
+
)
|
| 198 |
+
|
| 199 |
+
latents_og = latents.clone().detach()
|
| 200 |
+
latents_uncond_og = latents.clone().detach()
|
| 201 |
+
|
| 202 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
| 203 |
+
latents = latents * self.scheduler.init_noise_sigma
|
| 204 |
+
|
| 205 |
+
latents_uncond = latents.clone().detach()
|
| 206 |
+
return {
|
| 207 |
+
"latents": latents,
|
| 208 |
+
"obj_embeddings": obj_embeddings,
|
| 209 |
+
"uncond_embeddings": uncond_embeddings,
|
| 210 |
+
"bg_embeddings": bg_embeddings,
|
| 211 |
+
}
|
| 212 |
+
|
| 213 |
+
def _forward(self, model_inputs: Dict) -> Callable:
|
| 214 |
+
"""_forward.
|
| 215 |
+
|
| 216 |
+
Parameters
|
| 217 |
+
----------
|
| 218 |
+
model_inputs : Dict
|
| 219 |
+
model_inputs
|
| 220 |
+
|
| 221 |
+
Returns
|
| 222 |
+
-------
|
| 223 |
+
Callable
|
| 224 |
+
|
| 225 |
+
"""
|
| 226 |
+
latents = model_inputs["latents"]
|
| 227 |
+
obj_embeddings = model_inputs["obj_embeddings"]
|
| 228 |
+
uncond_embeddings = model_inputs["uncond_embeddings"]
|
| 229 |
+
bg_embeddings = model_inputs["bg_embeddings"]
|
| 230 |
+
|
| 231 |
+
kappa = 0.5 * torch.ones(
|
| 232 |
+
(self.num_inference_steps + 1, self.batch_size), device=self.device
|
| 233 |
+
)
|
| 234 |
+
ll_obj = torch.ones(
|
| 235 |
+
(self.num_inference_steps + 1, self.batch_size), device=self.device
|
| 236 |
+
)
|
| 237 |
+
ll_bg = torch.ones(
|
| 238 |
+
(self.num_inference_steps + 1, self.batch_size), device=self.device
|
| 239 |
+
)
|
| 240 |
+
ll_uncond = torch.ones(
|
| 241 |
+
(self.num_inference_steps + 1, self.batch_size), device=self.device
|
| 242 |
+
)
|
| 243 |
+
with torch.no_grad():
|
| 244 |
+
for i, t in enumerate(self.scheduler.timesteps):
|
| 245 |
+
dsigma = self.scheduler.sigmas[i +
|
| 246 |
+
1] - self.scheduler.sigmas[i]
|
| 247 |
+
sigma = self.scheduler.sigmas[i]
|
| 248 |
+
vel_obj = self.get_vel(t, sigma, latents, [obj_embeddings])
|
| 249 |
+
vel_uncond = self.get_vel(
|
| 250 |
+
t, sigma, latents, [uncond_embeddings])
|
| 251 |
+
|
| 252 |
+
vel_bg = self.get_vel(t, sigma, latents, [bg_embeddings])
|
| 253 |
+
noise = torch.sqrt(2 * torch.abs(dsigma) * sigma) * torch.randn_like(
|
| 254 |
+
latents
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
dx_ind = (
|
| 258 |
+
2
|
| 259 |
+
* dsigma
|
| 260 |
+
* (vel_uncond + self.guidance_scale * (vel_bg - vel_uncond))
|
| 261 |
+
+ noise
|
| 262 |
+
)
|
| 263 |
+
kappa[i + 1] = (
|
| 264 |
+
(torch.abs(dsigma) * (vel_bg - vel_obj) * (vel_bg + vel_obj)).sum(
|
| 265 |
+
(1, 2, 3)
|
| 266 |
+
)
|
| 267 |
+
- (dx_ind * ((vel_obj - vel_bg))).sum((1, 2, 3))
|
| 268 |
+
+ sigma * self.lift / self.num_inference_steps
|
| 269 |
+
)
|
| 270 |
+
kappa[i + 1] /= (
|
| 271 |
+
2
|
| 272 |
+
* dsigma
|
| 273 |
+
* self.guidance_scale
|
| 274 |
+
* ((vel_obj - vel_bg) ** 2).sum((1, 2, 3))
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
vf = vel_uncond + self.guidance_scale * (
|
| 278 |
+
(vel_bg - vel_uncond)
|
| 279 |
+
+ kappa[i + 1][:, None, None, None] * (vel_obj - vel_bg)
|
| 280 |
+
)
|
| 281 |
+
dx = 2 * dsigma * vf + noise
|
| 282 |
+
latents += dx
|
| 283 |
+
|
| 284 |
+
ll_obj[i + 1] = ll_obj[i] + (
|
| 285 |
+
-torch.abs(dsigma) / sigma * (vel_obj) ** 2
|
| 286 |
+
- (dx * (vel_obj / sigma))
|
| 287 |
+
).sum((1, 2, 3))
|
| 288 |
+
ll_bg[i + 1] = ll_bg[i] + (
|
| 289 |
+
-torch.abs(dsigma) / sigma * (vel_bg) ** 2 -
|
| 290 |
+
(dx * (vel_bg / sigma))
|
| 291 |
+
).sum((1, 2, 3))
|
| 292 |
+
|
| 293 |
+
return latents
|
| 294 |
+
|
| 295 |
+
def postprocess(self, latents: Callable) -> Callable:
|
| 296 |
+
"""postprocess.
|
| 297 |
+
|
| 298 |
+
Parameters
|
| 299 |
+
----------
|
| 300 |
+
latents : Callable
|
| 301 |
+
latents
|
| 302 |
+
|
| 303 |
+
Returns
|
| 304 |
+
-------
|
| 305 |
+
Callable
|
| 306 |
+
|
| 307 |
+
"""
|
| 308 |
+
image = self.get_batch(latents, 1, self.batch_size)
|
| 309 |
+
# Ensure the shape is (height, width, 3)
|
| 310 |
+
assert image.shape[-1] == 3 # Handle grayscale or invalid shapes
|
| 311 |
+
|
| 312 |
+
# Convert to uint8 if not already
|
| 313 |
+
image = image.to(torch.uint8) # Ensure it's uint8 for PIL
|
| 314 |
+
|
| 315 |
+
return image
|
| 316 |
+
|
| 317 |
+
def __call__(
|
| 318 |
+
self,
|
| 319 |
+
prompt_1: str,
|
| 320 |
+
prompt_2: str,
|
| 321 |
+
seed: int = None,
|
| 322 |
+
num_inference_steps: int = 1000,
|
| 323 |
+
batch_size: int = 1,
|
| 324 |
+
lift: int = 0.0,
|
| 325 |
+
height: int = 512,
|
| 326 |
+
width: int = 512,
|
| 327 |
+
guidance_scale: int = 7.5,
|
| 328 |
+
) -> Callable:
|
| 329 |
+
"""__call__.
|
| 330 |
+
|
| 331 |
+
Parameters
|
| 332 |
+
----------
|
| 333 |
+
prompt_1 : str
|
| 334 |
+
prompt_1
|
| 335 |
+
prompt_2 : str
|
| 336 |
+
prompt_2
|
| 337 |
+
seed : int
|
| 338 |
+
seed
|
| 339 |
+
num_inference_steps : int
|
| 340 |
+
num_inference_steps
|
| 341 |
+
batch_size : int
|
| 342 |
+
batch_size
|
| 343 |
+
lift : int
|
| 344 |
+
lift
|
| 345 |
+
height : int
|
| 346 |
+
height
|
| 347 |
+
width : int
|
| 348 |
+
width
|
| 349 |
+
guidance_scale : int
|
| 350 |
+
guidance_scale
|
| 351 |
+
|
| 352 |
+
Returns
|
| 353 |
+
-------
|
| 354 |
+
Callable
|
| 355 |
+
|
| 356 |
+
"""
|
| 357 |
+
# Preprocess inputs
|
| 358 |
+
model_inputs = self.preprocess(
|
| 359 |
+
prompt_1,
|
| 360 |
+
prompt_2,
|
| 361 |
+
seed,
|
| 362 |
+
num_inference_steps,
|
| 363 |
+
batch_size,
|
| 364 |
+
lift,
|
| 365 |
+
height,
|
| 366 |
+
width,
|
| 367 |
+
guidance_scale,
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
+
# Forward pass through the pipeline
|
| 371 |
+
latents = self._forward(model_inputs)
|
| 372 |
+
|
| 373 |
+
# Postprocess to generate the final output
|
| 374 |
+
images = self.postprocess(latents)
|
| 375 |
+
return images
|
scheduler/scheduler_config.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "EulerDiscreteScheduler",
|
| 3 |
+
"_diffusers_version": "0.31.0",
|
| 4 |
+
"beta_end": 0.012,
|
| 5 |
+
"beta_schedule": "scaled_linear",
|
| 6 |
+
"beta_start": 0.00085,
|
| 7 |
+
"clip_sample": false,
|
| 8 |
+
"final_sigmas_type": "zero",
|
| 9 |
+
"interpolation_type": "linear",
|
| 10 |
+
"num_train_timesteps": 1000,
|
| 11 |
+
"prediction_type": "epsilon",
|
| 12 |
+
"rescale_betas_zero_snr": false,
|
| 13 |
+
"set_alpha_to_one": false,
|
| 14 |
+
"sigma_max": null,
|
| 15 |
+
"sigma_min": null,
|
| 16 |
+
"skip_prk_steps": true,
|
| 17 |
+
"steps_offset": 1,
|
| 18 |
+
"timestep_spacing": "linspace",
|
| 19 |
+
"timestep_type": "discrete",
|
| 20 |
+
"trained_betas": null,
|
| 21 |
+
"use_beta_sigmas": false,
|
| 22 |
+
"use_exponential_sigmas": false,
|
| 23 |
+
"use_karras_sigmas": false
|
| 24 |
+
}
|
text_encoder/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "CompVis/stable-diffusion-v1-4",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"CLIPTextModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"dropout": 0.0,
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"hidden_act": "quick_gelu",
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"initializer_factor": 1.0,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 3072,
|
| 15 |
+
"layer_norm_eps": 1e-05,
|
| 16 |
+
"max_position_embeddings": 77,
|
| 17 |
+
"model_type": "clip_text_model",
|
| 18 |
+
"num_attention_heads": 12,
|
| 19 |
+
"num_hidden_layers": 12,
|
| 20 |
+
"pad_token_id": 1,
|
| 21 |
+
"projection_dim": 512,
|
| 22 |
+
"torch_dtype": "float32",
|
| 23 |
+
"transformers_version": "4.46.2",
|
| 24 |
+
"vocab_size": 49408
|
| 25 |
+
}
|
text_encoder/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:778d02eb9e707c3fbaae0b67b79ea0d1399b52e624fb634f2f19375ae7c047c3
|
| 3 |
+
size 492265168
|
tokenizer/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer/special_tokens_map.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<|startoftext|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": true,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|endoftext|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": true,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "<|endoftext|>",
|
| 17 |
+
"unk_token": {
|
| 18 |
+
"content": "<|endoftext|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": true,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
}
|
| 24 |
+
}
|
tokenizer/tokenizer_config.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"49406": {
|
| 5 |
+
"content": "<|startoftext|>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": true,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"49407": {
|
| 13 |
+
"content": "<|endoftext|>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": true,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
}
|
| 20 |
+
},
|
| 21 |
+
"bos_token": "<|startoftext|>",
|
| 22 |
+
"clean_up_tokenization_spaces": false,
|
| 23 |
+
"do_lower_case": true,
|
| 24 |
+
"eos_token": "<|endoftext|>",
|
| 25 |
+
"errors": "replace",
|
| 26 |
+
"model_max_length": 77,
|
| 27 |
+
"pad_token": "<|endoftext|>",
|
| 28 |
+
"tokenizer_class": "CLIPTokenizer",
|
| 29 |
+
"unk_token": "<|endoftext|>"
|
| 30 |
+
}
|
tokenizer/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
vae/config.json
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "AutoencoderKL",
|
| 3 |
+
"_diffusers_version": "0.31.0",
|
| 4 |
+
"_name_or_path": "CompVis/stable-diffusion-v1-4",
|
| 5 |
+
"act_fn": "silu",
|
| 6 |
+
"block_out_channels": [
|
| 7 |
+
128,
|
| 8 |
+
256,
|
| 9 |
+
512,
|
| 10 |
+
512
|
| 11 |
+
],
|
| 12 |
+
"down_block_types": [
|
| 13 |
+
"DownEncoderBlock2D",
|
| 14 |
+
"DownEncoderBlock2D",
|
| 15 |
+
"DownEncoderBlock2D",
|
| 16 |
+
"DownEncoderBlock2D"
|
| 17 |
+
],
|
| 18 |
+
"force_upcast": true,
|
| 19 |
+
"in_channels": 3,
|
| 20 |
+
"latent_channels": 4,
|
| 21 |
+
"latents_mean": null,
|
| 22 |
+
"latents_std": null,
|
| 23 |
+
"layers_per_block": 2,
|
| 24 |
+
"mid_block_add_attention": true,
|
| 25 |
+
"norm_num_groups": 32,
|
| 26 |
+
"out_channels": 3,
|
| 27 |
+
"sample_size": 512,
|
| 28 |
+
"scaling_factor": 0.18215,
|
| 29 |
+
"shift_factor": null,
|
| 30 |
+
"up_block_types": [
|
| 31 |
+
"UpDecoderBlock2D",
|
| 32 |
+
"UpDecoderBlock2D",
|
| 33 |
+
"UpDecoderBlock2D",
|
| 34 |
+
"UpDecoderBlock2D"
|
| 35 |
+
],
|
| 36 |
+
"use_post_quant_conv": true,
|
| 37 |
+
"use_quant_conv": true
|
| 38 |
+
}
|
vae/diffusion_pytorch_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b4d2b5932bb4151e54e694fd31ccf51fca908223c9485bd56cd0e1d83ad94c49
|
| 3 |
+
size 334643268
|