File size: 5,353 Bytes
d7a32af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
name: 4x_Valar_v1
use_tb_logger: false
model: sr
scale: 4
gpu_ids: [0]
use_amp: false
use_swa: false
use_cem: false
# Dataset options:
datasets:
train:
name: AdobeMIT5k
mode: aligned
dataroot_HR: [
'../mit5k/hr',
] # high resolution / ground truth images
dataroot_LR: [
'../mit5k/lr',
] # low resolution images
subset_file: null
use_shuffle: true
znorm: false
n_workers: 4
batch_size: 1
virtual_batch_size: 1
preprocess: crop
crop_size: 112
image_channels: 3
# AdaTarget
use_atg: true
atg_start_iter_rel: 0.83
# Color space conversion
# color: 'y'
# color_LR: 'y'
# color_HR: 'y'
# Rotations augmentations:
use_flip: true
use_rot: true
use_hrrot: false
# Presets and on the fly (OTF) augmentations
# Resize Options
lr_downscale: true
lr_downscale_types: [linear, bicubic, realistic]
aug_downscale: 0.5
resize_strat: pre
# Blur degradations
#lr_blur: true
#lr_blur_types: {sinc: 0.05, iso: 0.1, aniso: 0.1}
#iso:
# p: 0.4
# min_kernel_size: 1
# kernel_size: 5
# sigmaX: [0.1, 1.0]
# noise: null
#aniso:
# p: 0.3
# min_kernel_size: 1
# kernel_size: 3
# sigmaX: [0.1, 1.0]
# sigmaY: [0.1, 1.0]
# angle: [0, 180]
# noise: null
#sinc:
# p: 0.2
# min_kernel_size: 1
# kernel_size: 3
# min_cutoff: null
lr_noise: true
lr_noise_types: {JPEG: 3, camera: 1.6, patches: 2.5, clean: 1.5}
hr_unsharp_mask: true
hr_rand_unsharp: 1
camera:
p: 0.25
demosaic_fn: malvar
xyz_arr: D50
rg_range: [0.7, 3.0]
bg_range: [0.7, 3.0]
jpeg:
p: 0.75
min_quality: 30
max_quality: 95
unsharp:
p: 0.12
blur_algo: median
kernel_size: 1
strength: 0.10
unsharp_algo: laplacian
dataroot_kernels: '../mit5k/kernelgan_hr/'
noise_data: '../mit5k/noise_patches_path/'
# pre_crop: true
# hr_downscale: true
# hr_downscale_amt: [2, 1.75, 1.5, 1]
# shape_change: reshape_lr
path:
root: './'
#pretrain_model_G: '../models/4x_RRDB_ESRGAN.pth'
#pretrain_model_Loc: '../models/locnet.pth'
#resume_state: './experiments/4x_Valar_v1/training_state/latest.state'
# Generator options:
network_G:
which_model_G: esrgan
plus: true
gaussian_noise: true
# Discriminator options:
network_D: unet
train:
# Optimizer options:
optim_G: AdamP
optim_D: AdamP
# Schedulers options:
lr_scheme: MultiStepLR
lr_steps_rel: [0.1, 0.2, 0.4, 0.6]
lr_gamma: 0.5
# For SWA scheduler
swa_start_iter_rel: 0.75
swa_lr: 1e-4
swa_anneal_epochs: 10
swa_anneal_strategy: "cos"
# Losses:
pixel_criterion: clipl1 # pixel (content) loss
pixel_weight: 0.25
perceptual_opt:
perceptual_layers: {"conv1_2": 0.1, "conv2_2": 0.1, "conv3_4": 1.0, "conv4_4": 1.0, "conv5_4": 1.0}
use_input_norm: true
perceptual_weight: 1.05
style_weight: 0
feature_criterion: l1 # feature loss (VGG feature network)
feature_weight: 1
cx_type: contextual # contextual loss
cx_weight: 0.3
cx_vgg_layers: {conv_3_2: 1.0, conv_4_2: 1.0}
# hfen_criterion: l1 # hfen
# hfen_weight: 1e-6
# grad_type: grad-4d-l1 # image gradient loss
# grad_weight: 4e-1
#tv_type: normal # total variation
#tv_weight: 1e-5
#tv_norm: 1
#ssim_type: ms-ssim # structural similarity
#ssim_weight: 1
#lpips_weight: 0.6 # perceptual loss
#lpips_type: net-lin
#lpips_net: squeeze
# Experimental losses
# spl_type: spl # spatial profile loss
# spl_weight: 0.1
# of_type: overflow # overflow loss
# of_weight: 0.2
# range_weight: 1 # range loss
# fft_type: fft # FFT loss
# fft_weight: 0.1
color_criterion: color-l1cosinesim # color consistency loss
color_weight: 1.0
# avg_criterion: avg-l1 # averaging downscale loss
# avg_weight: 5
# ms_criterion: multiscale-l1 # multi-scale pixel loss
# ms_weight: 1e-2
# fdpl_type: fdpl # frequency domain-based perceptual loss
# fdpl_weight: 1e-3
# Adversarial loss:
gan_type: vanilla
gan_weight: 1e-1
# freeze_loc: 4
# For wgan-gp:
# D_update_ratio: 1
# D_init_iters: 0
# gp_weigth: 10
# Feature matching (if using the discriminator_vgg_128_fea or discriminator_vgg_fea):
# gan_featmaps: true
# dis_feature_criterion: cb # discriminator feature loss
# dis_feature_weight: 0.01
# Differentiable Augmentation for Data-Efficient GAN Training
# diffaug: true
# dapolicy: 'color,transl_zoom,flip,rotate,cutout'
# Batch (Mixup) augmentations
mixup: true
mixopts: [blend, rgb, mixup, cutmix, cutmixup] # , "cutout", "cutblur"]
mixprob: [0.5, 0.5, 1.0, 1.0, 1.0] #, 1.0, 1.0]
# mixalpha: [0.6, 1.0, 1.2, 0.7, 0.7] #, 0.001, 0.7]
aux_mixprob: 1.0
# aux_mixalpha: 1.2
## mix_p: 1.2
# Frequency Separator
fs: true
lpf_type: average
hpf_type: average
# Other training options:
manual_seed: 0
niter: 4e5
warmup_iter: -1
# overwrite_val_imgs: true
logger:
print_freq: 100
save_checkpoint_freq: 5e3
overwrite_chkp: false
|