File size: 8,116 Bytes
295ff14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
"""SMILES-based tokenization utilities.
"""

__all__ = ("PAD_TOKEN", "BOS_TOKEN", "EOS_TOKEN", "UNK_TOKEN", "SUFFIX",
           "SPECIAL_TOKENS", "PAD_TOKEN_ID", "BOS_TOKEN_ID", "EOS_TOKEN_ID",
           "UNK_TOKEN_ID", "SMILESBPETokenizer", "SMILESAlphabet")

from collections.abc import Collection, Iterator
from dataclasses import dataclass
from itertools import chain
from typing import Any, Dict, FrozenSet, List, Optional, Set, Tuple, Union
from tokenizers import AddedToken, Tokenizer
from tokenizers import decoders, models, normalizers, processors, trainers
from tokenizers.implementations import BaseTokenizer
from transformers import PreTrainedTokenizerFast


SUFFIX, PAD_TOKEN, BOS_TOKEN, EOS_TOKEN, UNK_TOKEN = "", "<pad>", "<s>", "</s>", "<unk>"
SPECIAL_TOKENS = [PAD_TOKEN, BOS_TOKEN, EOS_TOKEN, UNK_TOKEN]
PAD_TOKEN_ID, BOS_TOKEN_ID, EOS_TOKEN_ID, UNK_TOKEN_ID = range(4)


class SMILESBPETokenizer(BaseTokenizer):
    """Tokenizes SMILES strings and applies BPE.

    Args:
        vocab (`str` or `dict`, optional, defaults to `None`):
            Token vocabulary.
        merges (`str` or `dict` or `tuple`, optional, defaults to `None`):
            BPE merges.
        unk_token (`str` or `tokenizers.AddedToken`, optional, defaults to "<unk>")
        suffix (`str`, defaults to "")
        dropout (`float`, defaults to `None`)

    Examples:
        >>> tokenizer = SMILESBPETokenizer()
        >>> tokenizer.train("path-to-smiles-strings-file")
        Tokenization logs...
        >>> tokenizer.save_model("checkpoints-path")
        >>> same_tokenizer = SMILESBPETokenizer.from_file("checkpoints-path/vocab.json",
        ...                                               "checkpoints-path/merges.txt")
    """

    def __init__(
        self,
        vocab: Optional[Union[str, Dict[str, int]]] = None,
        merges: Optional[Union[str, Dict[Tuple[int, int], Tuple[int, int]]]] = None,
        unk_token: Union[str, AddedToken] = "<unk>",
        suffix: str = SUFFIX,
        dropout: Optional[float] = None,
    ) -> None:
        unk_token_str = str(unk_token)

        tokenizer = Tokenizer(models.BPE(vocab, merges, dropout=dropout,
                                         unk_token=unk_token_str,
                                         end_of_word_suffix=suffix))

        if tokenizer.token_to_id(unk_token_str) is not None:
            tokenizer.add_special_tokens([unk_token_str])

        tokenizer.normalizer = normalizers.Strip(left=False, right=True)
        tokenizer.decoder = decoders.Metaspace(add_prefix_space=True)
        tokenizer.post_processor = processors.TemplateProcessing(
            single=f"{BOS_TOKEN} $A {EOS_TOKEN}",
            special_tokens=[(BOS_TOKEN, BOS_TOKEN_ID), (EOS_TOKEN, EOS_TOKEN_ID)])

        parameters = {"model": "BPE", "unk_token": unk_token, "suffix": suffix,
                      "dropout": dropout}

        super().__init__(tokenizer, parameters)

    @classmethod
    def from_file(cls, vocab_filename: str, merges_filename: str, **kwargs) \
            -> "SMILESBPETokenizer":
        vocab, merges = models.BPE.read_file(vocab_filename, merges_filename)
        return cls(vocab, merges, **kwargs)

    def train(
        self,
        files: Union[str, List[str]],
        vocab_size: int = 1_000,
        min_frequency: int = 2,
        special_tokens: List[Union[str, AddedToken]] = None,
        limit_alphabet: int = 200,
        initial_alphabet: List[str] = None,
        suffix: Optional[str] = SUFFIX,
        show_progress: bool = True,
    ) -> None:
        special_tokens = special_tokens or SPECIAL_TOKENS
        initial_alphabet = initial_alphabet or []

        trainer = trainers.BpeTrainer(vocab_size=vocab_size,
                                      min_frequency=min_frequency,
                                      special_tokens=special_tokens,
                                      limit_alphabet=limit_alphabet,
                                      initial_alphabet=initial_alphabet,
                                      end_of_word_suffix=suffix,
                                      show_progress=show_progress)
        if isinstance(files, str):
            files = [files]
        self._tokenizer.train(files, trainer=trainer)

    def train_from_iterator(
        self,
        iterator: Iterator,
        vocab_size: int = 1_000,
        min_frequency: int = 2,
        special_tokens: List[Union[str, AddedToken]] = None,
        limit_alphabet: int = 200,
        initial_alphabet: List[str] = None,
        suffix: Optional[str] = SUFFIX,
        show_progress: bool = True,
    ) -> None:
        special_tokens = special_tokens or SPECIAL_TOKENS
        initial_alphabet = initial_alphabet or []

        trainer = trainers.BpeTrainer(vocab_size=vocab_size,
                                      min_frequency=min_frequency,
                                      special_tokens=special_tokens,
                                      limit_alphabet=limit_alphabet,
                                      initial_alphabet=initial_alphabet,
                                      end_of_word_suffix=suffix,
                                      show_progress=show_progress)
        self._tokenizer.train_from_iterator(iterator, trainer=trainer)

    @staticmethod
    def get_hf_tokenizer(
        tokenizer_file: str,
        special_tokens: Optional[Dict[str, str]] = None,
        model_max_length: int = 512,
        *init_inputs, **kwargs
    ) -> PreTrainedTokenizerFast:
        """Gets HuggingFace tokenizer from the pretrained `tokenizer_file`. Optionally,
        appends `special_tokens` to vocabulary and sets `model_max_length`.
        """
        tokenizer = PreTrainedTokenizerFast(tokenizer_file=tokenizer_file,
                                            *init_inputs, **kwargs)
        special_tokens = special_tokens or dict(zip(
            ["pad_token", "bos_token", "eos_token", "unk_token"],
            SPECIAL_TOKENS))
        tokenizer.add_special_tokens(special_tokens)
        tokenizer.model_max_length = model_max_length
        return tokenizer


@dataclass(init=True, eq=False, repr=True, frozen=True)
class SMILESAlphabet(Collection):
    atoms: FrozenSet[str] = frozenset([
        'Ac', 'Ag', 'Al', 'Am', 'Ar', 'As', 'At', 'Au', 'B', 'Ba', 'Be', 'Bh',
        'Bi', 'Bk', 'Br', 'C', 'Ca', 'Cd', 'Ce', 'Cf', 'Cl', 'Cm', 'Co', 'Cr',
        'Cs', 'Cu', 'Db', 'Dy', 'Er', 'Es', 'Eu', 'F', 'Fe', 'Fm', 'Fr', 'Ga',
        'Gd', 'Ge', 'H', 'He', 'Hf', 'Hg', 'Ho', 'Hs', 'I', 'In', 'Ir', 'K',
        'Kr', 'La', 'Li', 'Lr', 'Lu', 'Md', 'Mg', 'Mn', 'Mo', 'Mt', 'N', 'Na',
        'Nb', 'Nd', 'Ne', 'Ni', 'No', 'Np', 'O', 'Os', 'P', 'Pa', 'Pb', 'Pd',
        'Pm', 'Po', 'Pr', 'Pt', 'Pu', 'Ra', 'Rb', 'Re', 'Rf', 'Rh', 'Rn',
        'Ru', 'S', 'Sb', 'Sc', 'Se', 'Sg', 'Si', 'Sm', 'Sn', 'Sr', 'Ta', 'Tb',
        'Tc', 'Te', 'Th', 'Ti', 'Tl', 'Tm', 'U', 'V', 'W', 'Xe', 'Y', 'Yb',
        'Zn', 'Zr'
    ])

    # Bonds, charges, etc.
    non_atoms: FrozenSet[str] = frozenset([
        '-', '=', '#', ':', '(', ')', '.', '[', ']', '+', '-', '\\', '/', '*',
        '1', '2', '3', '4', '5', '6', '7', '8', '9', '0',
        '@', 'AL', 'TH', 'SP', 'TB', 'OH',
    ])

    additional: FrozenSet[str] = frozenset()

    def __contains__(self, item: Any) -> bool:
        return item in self.atoms or item in self.non_atoms

    def __iter__(self):
        return (token for token in chain(self.atoms, self.non_atoms))

    def __len__(self) -> int:
        return len(self.atoms) + len(self.non_atoms) + len(self.additional)

    def get_alphabet(self) -> Set[str]:
        alphabet = set()
        for token in self.atoms:
            if len(token) > 1:
                alphabet.update(list(token))
                alphabet.add(token[0].lower())
            else:
                alphabet.add(token)
                alphabet.add(token.lower())
        for token in chain(self.non_atoms, self.additional):
            if len(token) > 1:
                alphabet.update(list(token))
            else:
                alphabet.add(token)
        return alphabet