File size: 12,456 Bytes
295ff14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
#!/usr/bin/env python
# coding: utf-8
# # Generative Pre-Training from Molecules
#
# In this notebook, we demonstrate how to pretrain
# [HuggingFace](https://huggingface.co/transformers/)
# [GPT-2](https://huggingface.co/transformers/model_doc/gpt2.html#gpt2lmheadmodel) language model
# on a SMILES corpus. [SMILES](https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html) is
# a language construct for representing molecules, with its unique syntax and vocabulary of
# molecular constituents. Pretraining GPT-2 on large and diverse corpora allows capturing
# general representations of molecules capable of being transferred to such downstream tasks as
# molecular-property prediction and low-data de novo molecular design.
#
# ---
#
# *Author: Sanjar Adilov*
#
# *Paper: [Generative Pre-Training from Molecules](https://doi.org/10.33774/chemrxiv-2021-5fwjd)*,
# *DOI: 10.33774/chemrxiv-2021-5fwjd*
#
# *Package: https://github.com/sanjaradylov/smiles-gpt*
# ## Main Package
#
# Our [`smiles_gpt`](https://github.com/sanjaradylov/smiles-gpt/tree/master/smiles_gpt)
# package implements
# [pytorch-lightning](https://www.pytorchlightning.ai/)-compatible modules for data loading,
# model training and testing. The SMILES tokenizer and downstream regression and
# single-/multi-output classification models are also compatible with HuggingFace API.
# In[1]:
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
import sys
sys.path.append('/home/jmwang/drugai/smiles-gpt')
# In[2]:
try:
import smiles_gpt as gpt
except ImportError:
import sys
sys.path.extend([".."]) # Parent directory stores `smiles_gpt` package.
import smiles_gpt as gpt
# For demonstration purposes, we use only 10K subset of PubChem data made available by
# [ChemBERTa](https://arxiv.org/abs/2010.09885) developers. The original model was pretrained
# on the first 5M compounds with the following hyperparameters:
# ```python
# hyperparams = {"batch_size": 128, "max_epochs": 2, "max_length": 512,
# "learning_rate": 5e-4, "weight_decay": 0.0,
# "adam_eps": 1e-8, "adam_betas": (0.9, 0.999),
# "scheduler_T_max": 150_000, "final_learning_rate": 5e-8,
# "vocab_size": 1_000, "min_frequency": 2, "top_p": 0.96,
# "n_layer": 4, "n_head": 8, "n_embd": 512}
# ```
# In[3]:
# 10K subset of PubChem SMILES dataset.
filename = "../data/train_data.csv"
# Directory to serialize a tokenizer and model.
checkpoint = "../checkpoints/benchmark-5m"
tokenizer_filename = f"{checkpoint}/tokenizer.json"
# Tokenizer, model, optimizer, scheduler, and trainer hyperparameters.
hyperparams = {"batch_size": 256, "max_epochs": 10, "max_length": 256,
"learning_rate": 5e-4, "weight_decay": 0.0,
"adam_eps": 1e-8, "adam_betas": (0.9, 0.999),
"scheduler_T_max": 1_000, "final_learning_rate": 5e-8,
"vocab_size": 200, "min_frequency": 2, "top_p": 0.96,
"n_layer": 8, "n_head": 8, "n_embd": 256}
gpus = 1 # Specify either a list of GPU devices or an integer (0 for no GPU).
num_workers = 4 # Number of dataloader worker processes.
# ## Tokenization
#
# `smiles_gpt.SMILESBPETokenizer` first splits SMILES strings into characters, runs
# byte-pair encoding, and augments the resulting list with `"<s>"` (beginning-of-SMILES) and
# `"</s>"` (end-of-SMILES) special tokens. `smiles_gpt.SMILESAlphabet` stores 72 possible
# characters as an initial vocabulary.
# In[4]:
alphabet = list(gpt.SMILESAlphabet().get_alphabet())
tokenizer = gpt.SMILESBPETokenizer(dropout=None)
tokenizer.train(filename,
vocab_size=hyperparams["vocab_size"] + len(alphabet),
min_frequency=hyperparams["min_frequency"],
initial_alphabet=alphabet)
tokenizer.save_model(checkpoint)
tokenizer.save(tokenizer_filename)
# [`SMILESBPETokenizer`](https://github.com/sanjaradylov/smiles-gpt/blob/master/smiles_gpt/tokenization.py#L23)
# inherits `BaseTokenizer` from
# [Tokenizers](https://huggingface.co/docs/tokenizers/python/latest/index.html). It is already
# useful by itself, however, to make it more convenient and follow HuggingFace API, we load
# `transformers.PreTrainedTokenizerFast` instance of our tokenizer:
# In[5]:
from pprint import pprint
tokenizer = gpt.SMILESBPETokenizer.get_hf_tokenizer(
tokenizer_filename, model_max_length=hyperparams["max_length"])
smiles_string = "CC(Cl)=CCCC=C(C)Cl"
smiles_encoded = tokenizer(smiles_string)
smiles_merges = tokenizer.convert_ids_to_tokens(smiles_encoded["input_ids"])
pprint(smiles_encoded)
pprint(smiles_merges)
# ## Data Module
#
# [`smiles_gpt.LMDataModule`](https://github.com/sanjaradylov/smiles-gpt/blob/master/smiles_gpt/data.py#L248)
# is a lightning data module that loads SMILES data, encodes them
# with `tokenizer`, and returns pytorch data loader with
# `transformers.DataCollatorForLanguageModeling` collator. Encodings contain tensors of shape
# `hyperparameters["max_length"]`: `"input_ids"` and `"lables"`.
datamodule = gpt.LMDataModule(filename, tokenizer,
batch_size=hyperparams["batch_size"],
num_workers=num_workers)
datamodule.setup()
batch = next(iter(datamodule.train_dataloader()))
# ## GPT-2 Model
#
# Now we load HuggingFace
# [`GPT2LMHeadModel`](https://huggingface.co/transformers/model_doc/gpt2.html#gpt2lmheadmodel)
# with the configuration composed of previously
# defined model hyperparameters. The model processes mini-batch of input ids and labels, then
# returns predictions and cross-entropy loss between labels and predictions.
# In[7]:
from transformers import GPT2Config, GPT2LMHeadModel
config = GPT2Config(vocab_size=tokenizer.vocab_size,
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
n_layer=hyperparams["n_layer"],
n_head=hyperparams["n_head"],
n_embd=hyperparams["n_embd"],
n_positions=hyperparams["max_length"],
n_ctx=hyperparams["max_length"])
model = GPT2LMHeadModel(config)
outputs = model(**batch)
outputs.keys()
# ## Trainer
#
# GPT-2 is trained with autoregressive language modeling objective:
# $$
# P(\boldsymbol{s}) = P(s_1) \cdot P(s_2 | s_1) \cdots P(s_T | s_1, \ldots, s_{T-1}) =
# \prod_{t=1}^{T} P(s_t | s_{j < t}),
# $$
# where $\boldsymbol{s}$ is a tokenized (encoded) SMILES string, $s_t$ is a token from pretrained
# vocabulary $\mathcal{V}$.
#
# We use `pytorch_lightning.Trainer` to train GPT-2. Since `Trainer` requires lightning modules,
# we import our
# [`smiles_gpt.GPT2LitModel`](https://github.com/sanjaradylov/smiles-gpt/blob/master/smiles_gpt/language_modeling.py#L10)
# wrapper that implements training phases for
# `GPT2LMHeadModel`, configures an `Adam` optimizer with `CosineAnnealingLR` scheduler, and
# logs average perplexity every epoch.
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks.early_stopping import EarlyStopping
trainer = Trainer(
gpus=gpus,
max_epochs=hyperparams["max_epochs"],
callbacks=[EarlyStopping("ppl", 0.2, 2)],
auto_lr_find=False, # Set to True to search for optimal learning rate.
auto_scale_batch_size=False # Set to True to scale batch size
# accelerator="dp" # Uncomment for GPU training.
)
lit_model = gpt.GPT2LitModel(
model,
batch_size=hyperparams["batch_size"],
learning_rate=hyperparams["learning_rate"],
final_learning_rate=hyperparams["final_learning_rate"],
weight_decay=hyperparams["weight_decay"],
adam_eps=hyperparams["adam_eps"],
adam_betas=hyperparams["adam_betas"],
scheduler_T_max=hyperparams["scheduler_T_max"],
save_model_every=10, checkpoint=checkpoint)
trainer.fit(lit_model, datamodule)
exit(0)
# ## Interpretability
#
# [BertViz](https://github.com/jessevig/bertviz) inspects attention heads of transformers
# capturing specific patterns in data. Each head can be representative of some syntactic
# or short-/long-term relationships between tokens.
# In[9]:
import torch
from bertviz import head_view
smiles = "CC[NH+](CC)C1CCC([NH2+]C2CC2)(C(=O)[O-])C1"
inputs = tokenizer(smiles, add_special_tokens=False, return_tensors="pt")
input_ids_list = inputs["input_ids"].tolist()[0]
model = GPT2LMHeadModel.from_pretrained(checkpoint, output_attentions=True)
attention = model(torch.LongTensor(input_ids_list))[-1]
tokens = tokenizer.convert_ids_to_tokens(input_ids_list)
# Don't worry if a snippet is not displayed---just rerun this cell.
head_view(attention, tokens)
# In[10]:
from bertviz import model_view
# Don't worry if a snippet is not displayed---just rerun this cell.
model_view(attention, tokens)
# ## Sampling
#
# Finally, we generate novel SMILES strings with top-$p$ sampling$-$i.e., sampling from the
# smallest vocabulary subset $\mathcal{V}^{(p)} \subset \mathcal{V}$ s.t. it takes up the most
# probable tokens whose cumulative probability mass exceeds $p$, $0 < p < 1$. Model
# terminates the procedure upon encountering `"</s>"` or reaching maximum number
# `hyperparams["max_length"]`. Special tokens are eventually removed.
# In[11]:
import tqdm
model.eval() # Set the base model to evaluation mode.
generated_smiles_list = []
n_generated = 10000
for _ in tqdm.tqdm(range(n_generated)):
# Generate from "<s>" so that the next token is arbitrary.
smiles_start = torch.LongTensor([[tokenizer.bos_token_id]])
# Get generated token IDs.
generated_ids = model.generate(smiles_start,
max_length=hyperparams["max_length"],
do_sample=True,top_p=hyperparams["top_p"],
repetition_penalty=1.2,
pad_token_id=tokenizer.eos_token_id)
# Decode the IDs into tokens and remove "<s>" and "</s>".
generated_smiles = tokenizer.decode(generated_ids[0],
skip_special_tokens=True)
generated_smiles_list.append(generated_smiles)
generated_smiles_list[:10]
# In[ ]:
import tqdm
model.eval() # Set the base model to evaluation mode.
generated_smiles_list = []
n_generated = 10000
for _ in tqdm.tqdm(range(n_generated)):
# Generate from "<s>" so that the next token is arbitrary.
smiles_start = torch.LongTensor([[tokenizer.bos_token_id]])
# Get generated token IDs.
generated_ids = model.generate(smiles_start,
max_length=hyperparams["max_length"],
do_sample=True,top_p=hyperparams["top_p"],
repetition_penalty=2.0,
pad_token_id=tokenizer.eos_token_id)
# Decode the IDs into tokens and remove "<s>" and "</s>".
generated_smiles = tokenizer.decode(generated_ids[0],
skip_special_tokens=True)
generated_smiles_list.append(generated_smiles)
generated_smiles_list[:10]
# In[ ]:
import numpy as np
import pandas as pd
df2 = pd.DataFrame(generated_smiles_list, columns=['smiles'])
df2.to_csv("smi3GPT2-gen30K.csv",index=None,mode='a')
# In[ ]:
from rdkit.Chem import MolFromSmiles
from rdkit.RDLogger import DisableLog
from rdkit.Chem.Draw import MolsToGridImage
DisableLog("rdApp.*")
valid_molecules = []
for smiles in generated_smiles_list:
molecule = MolFromSmiles(smiles)
if molecule is not None:
valid_molecules.append(molecule)
MolsToGridImage(valid_molecules[:30])
# ## Further Reading
#
# The pretrained model can be used for transferring knowledge to downstream tasks
# including molecular property prediction. Check out
# [`smiles_gpt`](https://github.com/sanjaradylov/smiles-gpt/tree/master/smiles_gpt)
# repository for implementation details and
# [smiles-gpt/scripts](https://github.com/sanjaradylov/smiles-gpt/scripts)
# directory for single-/multi-output classification scripts. To evaluate generated
# molecules, consider distribution-learning metrics from
# [moleculegen-ml](https://github.com/sanjaradylov/moleculegen-ml).
#
# If you find `smiles_gpt` as well as examples from this repository useful in your
# research, please consider citing
# > Adilov, Sanjar (2021): Generative Pre-Training from Molecules. ChemRxiv. Preprint. https://doi.org/10.33774/chemrxiv-2021-5fwjd
|