Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- javascript
|
4 |
+
- code-generation
|
5 |
+
- transformers
|
6 |
+
- fine-tuned
|
7 |
+
- distilgpt2
|
8 |
+
license: mit
|
9 |
+
library_name: transformers
|
10 |
+
---
|
11 |
+
|
12 |
+
# π DistilGPT-2 Code Generator (Explanation β JavaScript Code)
|
13 |
+
|
14 |
+
This model is a **fine-tuned version of `distilgpt2`** trained to generate **JavaScript code** from natural language explanations.
|
15 |
+
|
16 |
+
It was trained on a dataset containing **explanation-code pairs**, making it useful for:
|
17 |
+
β
**Code generation from text descriptions**
|
18 |
+
β
**Learning JavaScript syntax & patterns**
|
19 |
+
β
**Automated coding assistance**
|
20 |
+
|
21 |
+
---
|
22 |
+
|
23 |
+
## **π Model Details**
|
24 |
+
- **Base Model:** `distilgpt2` (6x smaller than GPT-2)
|
25 |
+
- **Dataset:** JavaScript explanations + corresponding functions
|
26 |
+
- **Fine-tuning:** Trained using **LoRA (memory-efficient adaptation)**
|
27 |
+
- **Training Environment:** Google Colab (T4 GPU)
|
28 |
+
- **Optimization:** FP16 precision for faster training
|
29 |
+
|
30 |
+
---
|
31 |
+
|
32 |
+
## **π Example Usage**
|
33 |
+
Load the model and generate JavaScript code from explanations:
|
34 |
+
|
35 |
+
```python
|
36 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
37 |
+
|
38 |
+
model_name = "sureal01/distilgpt2-code-generator" # Replace with your username
|
39 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
40 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
41 |
+
|
42 |
+
def generate_code(explanation):
|
43 |
+
input_text = f"### Explanation:\n{explanation}\n\n### Generate JavaScript code:\n"
|
44 |
+
inputs = tokenizer(input_text, return_tensors="pt")
|
45 |
+
|
46 |
+
output = model.generate(**inputs, max_length=150, temperature=0.5, top_p=0.9, repetition_penalty=1.5)
|
47 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
48 |
+
|
49 |
+
# Example
|
50 |
+
test_explanation = "This function takes a name as input and returns a greeting message."
|
51 |
+
generated_code = generate_code(test_explanation)
|
52 |
+
print("\nπΉ **Generated Code:**\n", generated_code)
|