Update README.md
Browse files
README.md
CHANGED
@@ -43,32 +43,57 @@ while True:
|
|
43 |
conversation_history = conversation_history[-5:]
|
44 |
|
45 |
# Build the full prompt
|
46 |
-
|
47 |
|
48 |
# Tokenize the prompt
|
49 |
-
encodeds = tokenizer(
|
50 |
|
51 |
# Move model and inputs to the appropriate device
|
52 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
53 |
model.to(device)
|
54 |
inputs = encodeds.to(device)
|
55 |
|
56 |
-
#
|
57 |
-
generated_ids =
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
# Add the assistant's response to the conversation history
|
71 |
-
conversation_history.append(f"<|im_start|>
|
|
|
72 |
```
|
73 |
|
74 |
|
|
|
43 |
conversation_history = conversation_history[-5:]
|
44 |
|
45 |
# Build the full prompt
|
46 |
+
current_prompt = prompt + "\n".join(conversation_history)
|
47 |
|
48 |
# Tokenize the prompt
|
49 |
+
encodeds = tokenizer(current_prompt, return_tensors="pt", truncation=True).input_ids
|
50 |
|
51 |
# Move model and inputs to the appropriate device
|
52 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
53 |
model.to(device)
|
54 |
inputs = encodeds.to(device)
|
55 |
|
56 |
+
# Create an empty list to store generated tokens
|
57 |
+
generated_ids = inputs
|
58 |
+
|
59 |
+
# Start generating tokens one by one
|
60 |
+
assistant_response = ""
|
61 |
+
# print("Assistant: ", end="", flush=True) # Print "Assistant:" once before streaming starts
|
62 |
+
for _ in range(512): # Specify a max token limit for streaming
|
63 |
+
# Generate the next token in the sequence
|
64 |
+
next_token = model.generate(
|
65 |
+
generated_ids,
|
66 |
+
max_new_tokens=1,
|
67 |
+
pad_token_id=50259,
|
68 |
+
eos_token_id=50259,
|
69 |
+
num_return_sequences=1,
|
70 |
+
do_sample=True, # Use sampling for more diverse responses
|
71 |
+
top_k=50, # Limit to the top-k tokens to sample from
|
72 |
+
temperature=0.7, # Adjust temperature for randomness
|
73 |
+
top_p =0.90
|
74 |
+
)
|
75 |
+
|
76 |
+
# Add the generated token to the list
|
77 |
+
generated_ids = torch.cat([generated_ids, next_token[:, -1:]], dim=1)
|
78 |
+
|
79 |
+
# Decode the generated token (flatten it to a list of IDs)
|
80 |
+
token_id = next_token[0, -1].item() # Extract the last token as an integer
|
81 |
+
token = tokenizer.decode([token_id], skip_special_tokens=True)
|
82 |
+
|
83 |
+
|
84 |
+
# Append the token to the ongoing response
|
85 |
+
assistant_response += token
|
86 |
+
print(token, end="", flush=True) # Stream the token in real time
|
87 |
+
|
88 |
+
# If EOS token is encountered, stop generating
|
89 |
+
if token_id == 50259: # EOS token
|
90 |
+
break
|
91 |
+
|
92 |
+
print() # Print a newline after streaming is complete
|
93 |
|
94 |
# Add the assistant's response to the conversation history
|
95 |
+
conversation_history.append(f"<|im_start|>{assistant_response.strip()}<|im_end|>")
|
96 |
+
|
97 |
```
|
98 |
|
99 |
|