Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +21 -21
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 265.62 +/- 25.52
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ecd78439630>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ecd784396c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ecd78439750>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ecd784397e0>", "_build": "<function ActorCriticPolicy._build at 0x7ecd78439870>", "forward": "<function ActorCriticPolicy.forward at 0x7ecd78439900>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ecd78439990>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ecd78439a20>", "_predict": "<function ActorCriticPolicy._predict at 0x7ecd78439ab0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ecd78439b40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ecd78439bd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ecd78439c60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ecd783deb00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710393292064521222, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANo/or2G17Q/luoOv0Hd5L1pBRE+IDKUPgAAAAAAAAAAzQy7OpjEtD9k/hM+SQlyPXvY17pYFwa9AAAAAAAAAAAAE409z0YEPYoojD0tJC69L6BWv7jEUz8AAIA/AAAAAPORxj2hV5Y/OvkGP5kVJr+7fve9fgmmvQAAAAAAAAAAZqPlPToakT8QodE+7gMdvxnM1b3Giu+9AAAAAAAAAADNnw69FUO1PzMaNL8AM967MYUjPUKwHj4AAAAAAAAAAGAwiz7ZA00/dY8BP/S6hb9b68C+m+EyvQAAAAAAAAAAmrAYPh1KID/uT8M+a7Bcv4BOX76+jUK+AAAAAAAAAADgDzK/ARLTPobYYb/cdK6/Oc0EP0Peij0AAAAAAAAAALNWTD+uz926v+K9PwUIqb+VtwDABbJ+wAAAgD8AAAAAkIaBPnSZpD/M1EI/E8kIv+wYRb/aIA2/AAAAAAAAAADmxCy94oeHPwpXA76+5iu/LfE5PXoWFz4AAAAAAAAAAHMG771cTPw+4nfHvnAtn7+bJOE+ZgKYPgAAAAAAAAAAQGeOPQePtj8ilm4+sM6EvtQEBL4O2Bq9AAAAAAAAAACzdoY9JCiqPxYAMj6CWp6+Gn3uvR320z0AAAAAAAAAANCdkT4WFME/aAfvPpV9ar4q9b8+QjmWPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAABAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.6384000000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHsvUdzXBgyMAWyUS1KMAXSUR0BYTFw5vLowdX2UKGgGR8BybP7BO58SaAdLWGgIR0BYUMC9ytFKdX2UKGgGR8BxR83vQWvbaAdLcGgIR0BYUIoRZlnRdX2UKGgGR8BguTZYgaFVaAdLUWgIR0BYUfb9If8udX2UKGgGR8B08bhVENONaAdLfWgIR0BYUZEpiI+GdX2UKGgGR8BkthRdhRZVaAdLRmgIR0BYU2MXJo0zdX2UKGgGR8BdOI+r2g3+aAdLO2gIR0BYVMglnh86dX2UKGgGR8BbaKkhzNliaAdLVWgIR0BYVRh+fAbidX2UKGgGR8BXzX18LKFJaAdLR2gIR0BYVqArhBJJdX2UKGgGR8ByXzgn+hoNaAdLiGgIR0BYVp4Oc2BKdX2UKGgGR8BgwVeY2Kl6aAdLSWgIR0BYWMRL9MsZdX2UKGgGR8BfZKDPGACoaAdLO2gIR0BYWnwPRRdhdX2UKGgGR8B0YgsOG0u2aAdLbmgIR0BYXl7D2rXEdX2UKGgGR8B4PfIhhYvGaAdLamgIR0BYX1CXyAhCdX2UKGgGR8BQLw2uPmxMaAdLPmgIR0BYYPjXFtKqdX2UKGgGR8Bh51nZkCmuaAdLWGgIR0BYYS57PY4AdX2UKGgGR8BljHUKArhBaAdLnWgIR0BYY/NNahYedX2UKGgGR8A2Lp5eJHiFaAdLTWgIR0BYZCc9W6sidX2UKGgGR8BmNIvBacI7aAdLU2gIR0BYZ2BjFyaNdX2UKGgGR8BhMNSsKb8WaAdLfWgIR0BYZ71mJ3xGdX2UKGgGR8By6MdtEXtTaAdLYWgIR0BYaBBeHBUJdX2UKGgGR8BVi+0G/vfCaAdLTWgIR0BYaUwztTkydX2UKGgGR8Br6PxMFlkIaAdLaWgIR0BYaZ2ECeVcdX2UKGgGR8BhR8ju8brDaAdLSGgIR0BYa2JrLyMDdX2UKGgGR8BhD7RF7UobaAdLXGgIR0BYazH4oJAudX2UKGgGR8B3iejsUqQSaAdLXWgIR0BYay0BwMpgdX2UKGgGR8BQFQyIpH7QaAdLO2gIR0BYbskyDZlGdX2UKGgGR8BcMT3mFJxvaAdLYGgIR0BYb7U1AJLNdX2UKGgGR8Bpwz+m3vx6aAdLSWgIR0BYcJCv5gw5dX2UKGgGR8BY9eyJKraNaAdLcGgIR0BYcae9SMtLdX2UKGgGR8BdLLeuV5bAaAdLVmgIR0BYcuUt7KJVdX2UKGgGR8BXOv4IrvsraAdLTmgIR0BYdkDU3GXHdX2UKGgGR8BxVyD+R5kcaAdLXGgIR0BYecZpBX0YdX2UKGgGR8Bt82h/RVp9aAdLS2gIR0BYfVkH2RJVdX2UKGgGR8A55BOYYzi0aAdLd2gIR0BYfVqnFYMfdX2UKGgGR8B4P9DhLoOhaAdLX2gIR0BYfgr1/Ue/dX2UKGgGR8BWmuC04R29aAdLP2gIR0BYfv3BYV7AdX2UKGgGR8ArsumJm/WUaAdLV2gIR0BYgBh6Skj5dX2UKGgGR8B5h0HryDqXaAdLZmgIR0BYgbbDdgv2dX2UKGgGR8B1a7gm7aqTaAdLdGgIR0BYg11r6+FldX2UKGgGR8B1nxAbADaHaAdLaWgIR0BYhGACnxaxdX2UKGgGR8BgHf642CNCaAdLVGgIR0BYhL/bTMJQdX2UKGgGR8BTvFNpM6BAaAdLe2gIR0BYhXaWX1J2dX2UKGgGR8BtHkyDZlFuaAdLZWgIR0BYh0VBUrCndX2UKGgGR8Br1Jp1zQu3aAdLYGgIR0BYigXQ+lj3dX2UKGgGR8B4jih8IAwPaAdLkWgIR0BYjIxpL26DdX2UKGgGR8BoHYznA6+4aAdLPWgIR0BYjc5wOvt/dX2UKGgGR8BcsrQTmGM5aAdLYWgIR0BYjesHSncddX2UKGgGR8Bj6q8OCoS+aAdLS2gIR0BYj5sfq5bydX2UKGgGR8B1dT0RODaoaAdLQmgIR0BYkB99c8kldX2UKGgGR8BwDceMhougaAdLVWgIR0BYkfrKNhmYdX2UKGgGR8BgrIZIg/1QaAdLjGgIR0BYk0J8fFJhdX2UKGgGR8Beyuk1uR9xaAdLa2gIR0BYk7Xg9/z8dX2UKGgGR8BRDAj6eoUBaAdLRGgIR0BYled9Ujs2dX2UKGgGR0BPOxKHwgDBaAdLUGgIR0BYlrhzeXRgdX2UKGgGR8BpOcOI68xsaAdLZmgIR0BYlrOJLuhLdX2UKGgGR8Bfb8jqv/zbaAdLZWgIR0BYmgcYIjW1dX2UKGgGR8Bw/82Hck+paAdLV2gIR0BYnKW1MM7VdX2UKGgGR8BglTX8O09haAdLZGgIR0BYnQg1WKdhdX2UKGgGR8BdzkvCdjG2aAdLRWgIR0BYnZXEIgNgdX2UKGgGR8BeBOT/yXlbaAdLVmgIR0BYnzKHO8kEdX2UKGgGR8B3KWkUKzAvaAdLbmgIR0BYn72Dg62fdX2UKGgGR8BchucQRPGiaAdLQGgIR0BYo5VOsT37dX2UKGgGR8BxbOD15B1LaAdLXWgIR0BYp0Zm7J4jdX2UKGgGR8BmAelhw2l3aAdLWmgIR0BYpx1klNUPdX2UKGgGR8BX2nlS0jTsaAdLQWgIR0BYp8er+5vtdX2UKGgGR8B2YxgKF7D3aAdLbWgIR0BYqb2xptaZdX2UKGgGR8BbcAM2FWXDaAdLdGgIR0BYq4WUKRdQdX2UKGgGR8BJ8dwNsnAqaAdLP2gIR0BYrU0vXbuddX2UKGgGR8B0K9qSHM2WaAdLW2gIR0BYrfLcKw6idX2UKGgGR8BpWIJb+tKaaAdLc2gIR0BYsDVlPJq7dX2UKGgGR8B0822BreqJaAdLa2gIR0BYsChrWRRudX2UKGgGR8BqrbDXOGCaaAdLSGgIR0BYsxczImw8dX2UKGgGR8BbMO1KGtZFaAdLU2gIR0BYs6mXPZ7HdX2UKGgGR8BdvY5YHPeIaAdLPWgIR0BYtLeEZiuudX2UKGgGR8Bc7uaa1Cw9aAdLcmgIR0BYtZZbILgGdX2UKGgGR8B1vvIdU83daAdLc2gIR0BYuWcBltj1dX2UKGgGR8BhDYieNDMNaAdLXGgIR0BYuRvrGBFvdX2UKGgGR8By2PX7Lt/naAdLaWgIR0BYugiA2AG0dX2UKGgGR8BhiRRbbDdhaAdLVWgIR0BYvyde6ZpjdX2UKGgGR8B08Y3Ov+wUaAdLXGgIR0BYwSad+XqrdX2UKGgGR8BggVO9FnZkaAdLVmgIR0BYwg7gbZOBdX2UKGgGR8B0hem1pj+aaAdLaGgIR0BYxLihnJ1adX2UKGgGR8Bc3DMibDuSaAdLX2gIR0BYxg0GeMAFdX2UKGgGR8Bf0MaXKKYRaAdLRmgIR0BYxrUb1h9cdX2UKGgGR8Bx3J2NedCmaAdLV2gIR0BYyJx3mmtRdX2UKGgGR8Bt1KZH/cWTaAdLRGgIR0BYyKFRHf/FdX2UKGgGR8BvS4G0NSZSaAdLZ2gIR0BYyk83dbgTdX2UKGgGR8AoelvZRKpUaAdLcGgIR0BYzS7CiyprdX2UKGgGR8B3HFu4wyqNaAdLT2gIR0BYz+u7pV0cdX2UKGgGR8BwbeYv38GcaAdLZWgIR0BY0Eep4rz5dX2UKGgGR8BjwoRywOe8aAdLbGgIR0BY0Q+MZP2xdX2UKGgGR8BtEuVHFxXGaAdLWmgIR0BY0cQqZtvXdX2UKGgGR8BeRQbEP1+RaAdLQWgIR0BY0wX668QJdX2UKGgGR8Bi2AIQe3hGaAdLhWgIR0BY1EFKTSssdX2UKGgGR8B9zlUS7GvPaAdLaWgIR0BY1b4WUKRddX2UKGgGR8BMQ4O2AoXsaAdLPWgIR0BY18l1KXfJdX2UKGgGR8BjeWDQJHAiaAdLO2gIR0BY2OJUHY6GdX2UKGgGR8Blm/xx1gYxaAdLWGgIR0BY2wte2NNrdX2UKGgGR8B2v74dp7C0aAdLcWgIR0BY3Lwz+FURdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a75a7ff81f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a75a7ff8280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a75a7ff8310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a75a7ff83a0>", "_build": "<function ActorCriticPolicy._build at 0x7a75a7ff8430>", "forward": "<function ActorCriticPolicy.forward at 0x7a75a7ff84c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a75a7ff8550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a75a7ff85e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7a75a7ff8670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a75a7ff8700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a75a7ff8790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a75a7ff8820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a75a7f8e0c0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710397794218643465, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYeLz39OXE/iKWKvaBNyL4ACOw8xskcvQAAAAAAAAAATUt7vVN/vj+Ha4e+3wL7vc5Ivb3ymvy9AAAAAAAAAADmsn29j94ZukN/hzaJFlSwCqHAuj1CpLUAAIA/AACAP8obbb6evCI/ReVTPs/xtL7TsAm9LWjUPQAAAAAAAAAAgJQnvql8U7x0uL+8XaYhuyiBtT1psQQ8AACAPwAAgD+tWSK+Xai2PijpXj5LW5++O9wRvSWCPb0AAAAAAAAAAFpwCj7QIoQ++epAvoSwor7/1cG9z6OzvQAAAAAAAAAAMyzyPHelFz7yHKa8mKSDvtp3QDwVbuQ9AAAAAAAAAABNewq95S7APzTqi76HvEA+bBiVOsYxBb0AAAAAAAAAAF1NZL7PN10+e6FpPrBJo77eTQa9LumkPAAAAAAAAAAAIHEQvvyuMT+/yCo8bxWwvmI4lL3AeF27AAAAAAAAAAAahLm9yaDlPg6VPD6Hisa+dAmhPDCKZz0AAAAAAAAAAA0Gmz2PDo0/8yIKPjDhsL4IhKw9cSeWvQAAAAAAAAAAmhEHvTk/tT+OvBi+YvWQvrDNi73GccC8AAAAAAAAAACaF3q8w30/ug4WLbRJr+SvwRz9OstwnjMAAIA/AACAP5p73rx7W747Q8EYvpODnL0psE69sMeQPgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHOcqoVEd/+MAWyUS/qMAXSUR0CQqcKji4rjdX2UKGgGR0ByWcHs1KoRaAdNagFoCEdAkKnjxPO6d3V9lChoBkdAcobSgXdj5WgHTTwBaAhHQJCqlgnc+JR1fZQoaAZHQHHukfHPu5VoB00iAWgIR0CQqtpZwGW2dX2UKGgGR0BzqMLRa5f/aAdNSAFoCEdAkKrwPmPo3nV9lChoBkdAcLBfthNM5GgHTRwBaAhHQJCtA4aP0Zp1fZQoaAZHQHESsB6rvLJoB00RAWgIR0CQriKmbb1zdX2UKGgGR0Bxq6qYJE6UaAdNBAFoCEdAkK6D6SDAanV9lChoBkdAcI07eVLSNWgHS/poCEdAkK6dsnAqNXV9lChoBkdAcHpHjIaLoGgHTU8BaAhHQJCvGUVzp5h1fZQoaAZHQHGEwQpWmxdoB00dAWgIR0CQryKsuFpPdX2UKGgGR0BypjMJQcghaAdNHwFoCEdAkK9k25xzaXV9lChoBkdAbeaxSHdoFmgHTSgBaAhHQJCvjg4wRGt1fZQoaAZHQHKR3ObAk9loB0vtaAhHQJCvooKD0191fZQoaAZHQHCuoSUTtb9oB00eAWgIR0CQsBCUX531dX2UKGgGR0BsMIfGMn7YaAdNDgFoCEdAkLExsZYPoXV9lChoBkdAcyNf16E8JWgHTQUBaAhHQJCxfu2JBPd1fZQoaAZHQHJfzzd1uBNoB0v4aAhHQJCyS7sfJV91fZQoaAZHQG/fhNmDlHVoB00fAWgIR0CQslRcu8K5dX2UKGgGR0Bx3MB91EE1aAdNGAFoCEdAkLMV/hESd3V9lChoBkdAcHwuEmICVGgHTUEBaAhHQJCz/VawD/51fZQoaAZHQHCI+/xlQMxoB0v9aAhHQJC0h6Vt4zJ1fZQoaAZHQGw1n9Nvfj1oB00OAWgIR0CQtinbqQiidX2UKGgGR0Bv+zQokRjCaAdNCwFoCEdAkLaPjfek6HV9lChoBkdAcbwxxDLKWGgHTQUBaAhHQJC26GgzxgB1fZQoaAZHQHFf/+CK77NoB00cAWgIR0CQtwvQ4S6EdX2UKGgGR0Bt/bF85S3taAdNDAFoCEdAkLdoB3iaRnV9lChoBkdAcY8kdFOO82gHTQsBaAhHQJC4HoNd7fJ1fZQoaAZHQHGMZGjKxLVoB00lAWgIR0CQuG32EkB0dX2UKGgGR0BtDRx95QgtaAdNAwFoCEdAkLkWPkq+anV9lChoBkdAcVi/ZM+NcWgHTVYBaAhHQJC5ZMvh60J1fZQoaAZHQHC9v9kz41xoB01OAWgIR0CQuZiI+GGmdX2UKGgGR0BwPU0m+j/NaAdL9WgIR0CQudN4JNTMdX2UKGgGR0ByiPVVghKUaAdNCgFoCEdAkLpOIhyKenV9lChoBkdAck8HlfZ26mgHS/9oCEdAkLq/GIbfg3V9lChoBkdAcMIE1l5GBmgHTT8BaAhHQJC65Zid8Rd1fZQoaAZHQHGXiZSeiBZoB00UAWgIR0CQvBa1kUbldX2UKGgGR0BwCB16mfoSaAdNCgFoCEdAkLxHVLBbfXV9lChoBkdAbLaV+I/JNmgHS/5oCEdAkL3Ch8IAwXV9lChoBkdAck+kp7TlT2gHTSEBaAhHQJC/RprULD11fZQoaAZHQG8qGHHmzSloB007AWgIR0CQv3GnXNC7dX2UKGgGR0BwIrCwbEP2aAdNDgFoCEdAkNMDviLl3nV9lChoBkdAcgGuhsZYP2gHTUIBaAhHQJDT6PT5O8F1fZQoaAZHQHHCL9If8uVoB01aAWgIR0CQ1H56t1ZDdX2UKGgGR0BvASPluFYdaAdNPAFoCEdAkNS+8kD6nHV9lChoBkdAcLQxG2Cul2gHTR8BaAhHQJDVWlTFVDN1fZQoaAZHQHKKld9lVcVoB00jAWgIR0CQ1dtzCDVZdX2UKGgGR0Bypm7wrlNlaAdNNAFoCEdAkNXdm16VuHV9lChoBkdAcp+Aaef7JmgHTQsBaAhHQJDWFHhCMP11fZQoaAZHQHJl6Df3vhJoB00lAWgIR0CQ1ksVLzwudX2UKGgGR0Bwtan+AEt/aAdNCAFoCEdAkNabUgB91HV9lChoBkdAbrbtDUmUn2gHTTgBaAhHQJDYXTDwYtR1fZQoaAZHQGwZAYxcmjVoB00ZAWgIR0CQ2QcENe+mdX2UKGgGR0Bu66VhTfixaAdNMAFoCEdAkNmQIldC3XV9lChoBkdAcG0P/7zkIWgHTR8BaAhHQJDaut9x6v91fZQoaAZHQHBxJmyxA0NoB0v4aAhHQJDclHPNVzZ1fZQoaAZHQHH2wLApKBdoB00wAWgIR0CQ3P/7BO58dX2UKGgGR0BxAlOwgTysaAdNOQFoCEdAkN0mucMEzXV9lChoBkdAcDpwfQrtmmgHTRIBaAhHQJDd7EWIoE11fZQoaAZHQHFfmFev6j5oB00IAWgIR0CQ3iu0kWykdX2UKGgGR0BwTehnJ1aGaAdNAQFoCEdAkN5LrHEMs3V9lChoBkdAcYZA2AG0NWgHTQYBaAhHQJDeydiDujR1fZQoaAZHQHAe1G5MDfZoB00MAWgIR0CQ3spZwGW2dX2UKGgGR0BuQ/Cj1wo9aAdNBAFoCEdAkN7+eJ53T3V9lChoBkdAcGCAAyVObmgHTVQBaAhHQJDfBrTH80l1fZQoaAZHQHHXJ2t+1BtoB00xAWgIR0CQ3w9If8uSdX2UKGgGR0ByjunAIppfaAdNAgFoCEdAkOBGQ0XP7nV9lChoBkdAcZ2tb9qDb2gHTQEBaAhHQJDhTaEi+td1fZQoaAZHQG75MvIwM6RoB02YAWgIR0CQ4m8hcJMQdX2UKGgGR0Bx2IdxQzk7aAdNOgFoCEdAkOKBxo7FKnV9lChoBkdAcjB1DSgGr2gHTQMBaAhHQJDijaCcwxp1fZQoaAZHQHFlSvkili1oB0v8aAhHQJDkMXYUWVN1fZQoaAZHQG30klVtGd9oB00NAWgIR0CQ5Fu7YkE+dX2UKGgGR0ByY5YRujynaAdL4WgIR0CQ5PoMa0hNdX2UKGgGR0BzVi+FlCkXaAdNKAFoCEdAkOWwhfShJ3V9lChoBkdAcRNC7K7qZGgHTRcBaAhHQJDl4r3Cbc51fZQoaAZHQHJbW7e2uxNoB00FAWgIR0CQ5nlUIcBEdX2UKGgGR0BxvyZZ0SyuaAdNIwFoCEdAkOdrRfF72XV9lChoBkdAckLAIppeu2gHTSwBaAhHQJDndpFkQPJ1fZQoaAZHQHEIeJxeb/hoB00rAWgIR0CQ56MbWEsbdX2UKGgGR0BxV4Ka5PM0aAdNBwFoCEdAkOgdEPUaynV9lChoBkdAcXIwKBun/GgHTXQBaAhHQJDpFVHWjGl1fZQoaAZHQHErhFNL129oB017AWgIR0CQ6WnRsuWbdX2UKGgGR0BwludAgPmQaAdNGwFoCEdAkOnqz3RG+nV9lChoBkdAcDumWMS9NGgHS/hoCEdAkOoDbFjur3V9lChoBkdAcf1O58Sf2GgHTSEBaAhHQJDrKnUDuBt1fZQoaAZHQHDYHM6ij+JoB00zAWgIR0CQ673gk1MudX2UKGgGR0BuNZfv4M4MaAdL+2gIR0CQ69X7tRekdX2UKGgGR0ByAN9tuUD/aAdNMQFoCEdAkO2xMi8nNXV9lChoBkdAckc/MGHHm2gHTSIBaAhHQJDu9Wp6yB11fZQoaAZHQHKQ1ZLZi/hoB009AWgIR0CQ7vcAzYVZdX2UKGgGR0BxIews5GSZaAdL/mgIR0CQ71SHdoFndX2UKGgGR0BvBI33pOeraAdNBgFoCEdAkO+ikTHsC3V9lChoBkdAcVmYgq3EymgHTQgBaAhHQJDv4tBfKIV1fZQoaAZHQHD3prYXfqJoB01fAWgIR0CQ8MUmlZX/dX2UKGgGR0BwyoRradtmaAdNGgFoCEdAkPDuxwAEMnV9lChoBkdAcnv4O+ZgHGgHTRYBaAhHQJDx+JgsshB1fZQoaAZHQHG1Yc3l0YFoB00aAWgIR0CQ8pzj3mFKdX2UKGgGR0ByyHILgGbDaAdNNwFoCEdAkPKplvqC6HV9lChoBkdAcop6dlNDdGgHTSIBaAhHQJDy7JtBOYZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54bd45eee842764c86db1b898e880d7918682bb4f3fb94305fa9a530f4812278
|
3 |
+
size 148068
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,54 +4,54 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7a75a7ff81f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a75a7ff8280>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a75a7ff8310>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a75a7ff83a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7a75a7ff8430>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7a75a7ff84c0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7a75a7ff8550>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a75a7ff85e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7a75a7ff8670>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a75a7ff8700>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a75a7ff8790>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7a75a7ff8820>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7a75a7f8e0c0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1710397794218643465,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYeLz39OXE/iKWKvaBNyL4ACOw8xskcvQAAAAAAAAAATUt7vVN/vj+Ha4e+3wL7vc5Ivb3ymvy9AAAAAAAAAADmsn29j94ZukN/hzaJFlSwCqHAuj1CpLUAAIA/AACAP8obbb6evCI/ReVTPs/xtL7TsAm9LWjUPQAAAAAAAAAAgJQnvql8U7x0uL+8XaYhuyiBtT1psQQ8AACAPwAAgD+tWSK+Xai2PijpXj5LW5++O9wRvSWCPb0AAAAAAAAAAFpwCj7QIoQ++epAvoSwor7/1cG9z6OzvQAAAAAAAAAAMyzyPHelFz7yHKa8mKSDvtp3QDwVbuQ9AAAAAAAAAABNewq95S7APzTqi76HvEA+bBiVOsYxBb0AAAAAAAAAAF1NZL7PN10+e6FpPrBJo77eTQa9LumkPAAAAAAAAAAAIHEQvvyuMT+/yCo8bxWwvmI4lL3AeF27AAAAAAAAAAAahLm9yaDlPg6VPD6Hisa+dAmhPDCKZz0AAAAAAAAAAA0Gmz2PDo0/8yIKPjDhsL4IhKw9cSeWvQAAAAAAAAAAmhEHvTk/tT+OvBi+YvWQvrDNi73GccC8AAAAAAAAAACaF3q8w30/ug4WLbRJr+SvwRz9OstwnjMAAIA/AACAP5p73rx7W747Q8EYvpODnL0psE69sMeQPgAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVNgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHOcqoVEd/+MAWyUS/qMAXSUR0CQqcKji4rjdX2UKGgGR0ByWcHs1KoRaAdNagFoCEdAkKnjxPO6d3V9lChoBkdAcobSgXdj5WgHTTwBaAhHQJCqlgnc+JR1fZQoaAZHQHHukfHPu5VoB00iAWgIR0CQqtpZwGW2dX2UKGgGR0BzqMLRa5f/aAdNSAFoCEdAkKrwPmPo3nV9lChoBkdAcLBfthNM5GgHTRwBaAhHQJCtA4aP0Zp1fZQoaAZHQHESsB6rvLJoB00RAWgIR0CQriKmbb1zdX2UKGgGR0Bxq6qYJE6UaAdNBAFoCEdAkK6D6SDAanV9lChoBkdAcI07eVLSNWgHS/poCEdAkK6dsnAqNXV9lChoBkdAcHpHjIaLoGgHTU8BaAhHQJCvGUVzp5h1fZQoaAZHQHGEwQpWmxdoB00dAWgIR0CQryKsuFpPdX2UKGgGR0BypjMJQcghaAdNHwFoCEdAkK9k25xzaXV9lChoBkdAbeaxSHdoFmgHTSgBaAhHQJCvjg4wRGt1fZQoaAZHQHKR3ObAk9loB0vtaAhHQJCvooKD0191fZQoaAZHQHCuoSUTtb9oB00eAWgIR0CQsBCUX531dX2UKGgGR0BsMIfGMn7YaAdNDgFoCEdAkLExsZYPoXV9lChoBkdAcyNf16E8JWgHTQUBaAhHQJCxfu2JBPd1fZQoaAZHQHJfzzd1uBNoB0v4aAhHQJCyS7sfJV91fZQoaAZHQG/fhNmDlHVoB00fAWgIR0CQslRcu8K5dX2UKGgGR0Bx3MB91EE1aAdNGAFoCEdAkLMV/hESd3V9lChoBkdAcHwuEmICVGgHTUEBaAhHQJCz/VawD/51fZQoaAZHQHCI+/xlQMxoB0v9aAhHQJC0h6Vt4zJ1fZQoaAZHQGw1n9Nvfj1oB00OAWgIR0CQtinbqQiidX2UKGgGR0Bv+zQokRjCaAdNCwFoCEdAkLaPjfek6HV9lChoBkdAcbwxxDLKWGgHTQUBaAhHQJC26GgzxgB1fZQoaAZHQHFf/+CK77NoB00cAWgIR0CQtwvQ4S6EdX2UKGgGR0Bt/bF85S3taAdNDAFoCEdAkLdoB3iaRnV9lChoBkdAcY8kdFOO82gHTQsBaAhHQJC4HoNd7fJ1fZQoaAZHQHGMZGjKxLVoB00lAWgIR0CQuG32EkB0dX2UKGgGR0BtDRx95QgtaAdNAwFoCEdAkLkWPkq+anV9lChoBkdAcVi/ZM+NcWgHTVYBaAhHQJC5ZMvh60J1fZQoaAZHQHC9v9kz41xoB01OAWgIR0CQuZiI+GGmdX2UKGgGR0BwPU0m+j/NaAdL9WgIR0CQudN4JNTMdX2UKGgGR0ByiPVVghKUaAdNCgFoCEdAkLpOIhyKenV9lChoBkdAck8HlfZ26mgHS/9oCEdAkLq/GIbfg3V9lChoBkdAcMIE1l5GBmgHTT8BaAhHQJC65Zid8Rd1fZQoaAZHQHGXiZSeiBZoB00UAWgIR0CQvBa1kUbldX2UKGgGR0BwCB16mfoSaAdNCgFoCEdAkLxHVLBbfXV9lChoBkdAbLaV+I/JNmgHS/5oCEdAkL3Ch8IAwXV9lChoBkdAck+kp7TlT2gHTSEBaAhHQJC/RprULD11fZQoaAZHQG8qGHHmzSloB007AWgIR0CQv3GnXNC7dX2UKGgGR0BwIrCwbEP2aAdNDgFoCEdAkNMDviLl3nV9lChoBkdAcgGuhsZYP2gHTUIBaAhHQJDT6PT5O8F1fZQoaAZHQHHCL9If8uVoB01aAWgIR0CQ1H56t1ZDdX2UKGgGR0BvASPluFYdaAdNPAFoCEdAkNS+8kD6nHV9lChoBkdAcLQxG2Cul2gHTR8BaAhHQJDVWlTFVDN1fZQoaAZHQHKKld9lVcVoB00jAWgIR0CQ1dtzCDVZdX2UKGgGR0Bypm7wrlNlaAdNNAFoCEdAkNXdm16VuHV9lChoBkdAcp+Aaef7JmgHTQsBaAhHQJDWFHhCMP11fZQoaAZHQHJl6Df3vhJoB00lAWgIR0CQ1ksVLzwudX2UKGgGR0Bwtan+AEt/aAdNCAFoCEdAkNabUgB91HV9lChoBkdAbrbtDUmUn2gHTTgBaAhHQJDYXTDwYtR1fZQoaAZHQGwZAYxcmjVoB00ZAWgIR0CQ2QcENe+mdX2UKGgGR0Bu66VhTfixaAdNMAFoCEdAkNmQIldC3XV9lChoBkdAcG0P/7zkIWgHTR8BaAhHQJDaut9x6v91fZQoaAZHQHBxJmyxA0NoB0v4aAhHQJDclHPNVzZ1fZQoaAZHQHH2wLApKBdoB00wAWgIR0CQ3P/7BO58dX2UKGgGR0BxAlOwgTysaAdNOQFoCEdAkN0mucMEzXV9lChoBkdAcDpwfQrtmmgHTRIBaAhHQJDd7EWIoE11fZQoaAZHQHFfmFev6j5oB00IAWgIR0CQ3iu0kWykdX2UKGgGR0BwTehnJ1aGaAdNAQFoCEdAkN5LrHEMs3V9lChoBkdAcYZA2AG0NWgHTQYBaAhHQJDeydiDujR1fZQoaAZHQHAe1G5MDfZoB00MAWgIR0CQ3spZwGW2dX2UKGgGR0BuQ/Cj1wo9aAdNBAFoCEdAkN7+eJ53T3V9lChoBkdAcGCAAyVObmgHTVQBaAhHQJDfBrTH80l1fZQoaAZHQHHXJ2t+1BtoB00xAWgIR0CQ3w9If8uSdX2UKGgGR0ByjunAIppfaAdNAgFoCEdAkOBGQ0XP7nV9lChoBkdAcZ2tb9qDb2gHTQEBaAhHQJDhTaEi+td1fZQoaAZHQG75MvIwM6RoB02YAWgIR0CQ4m8hcJMQdX2UKGgGR0Bx2IdxQzk7aAdNOgFoCEdAkOKBxo7FKnV9lChoBkdAcjB1DSgGr2gHTQMBaAhHQJDijaCcwxp1fZQoaAZHQHFlSvkili1oB0v8aAhHQJDkMXYUWVN1fZQoaAZHQG30klVtGd9oB00NAWgIR0CQ5Fu7YkE+dX2UKGgGR0ByY5YRujynaAdL4WgIR0CQ5PoMa0hNdX2UKGgGR0BzVi+FlCkXaAdNKAFoCEdAkOWwhfShJ3V9lChoBkdAcRNC7K7qZGgHTRcBaAhHQJDl4r3Cbc51fZQoaAZHQHJbW7e2uxNoB00FAWgIR0CQ5nlUIcBEdX2UKGgGR0BxvyZZ0SyuaAdNIwFoCEdAkOdrRfF72XV9lChoBkdAckLAIppeu2gHTSwBaAhHQJDndpFkQPJ1fZQoaAZHQHEIeJxeb/hoB00rAWgIR0CQ56MbWEsbdX2UKGgGR0BxV4Ka5PM0aAdNBwFoCEdAkOgdEPUaynV9lChoBkdAcXIwKBun/GgHTXQBaAhHQJDpFVHWjGl1fZQoaAZHQHErhFNL129oB017AWgIR0CQ6WnRsuWbdX2UKGgGR0BwludAgPmQaAdNGwFoCEdAkOnqz3RG+nV9lChoBkdAcDumWMS9NGgHS/hoCEdAkOoDbFjur3V9lChoBkdAcf1O58Sf2GgHTSEBaAhHQJDrKnUDuBt1fZQoaAZHQHDYHM6ij+JoB00zAWgIR0CQ673gk1MudX2UKGgGR0BuNZfv4M4MaAdL+2gIR0CQ69X7tRekdX2UKGgGR0ByAN9tuUD/aAdNMQFoCEdAkO2xMi8nNXV9lChoBkdAckc/MGHHm2gHTSIBaAhHQJDu9Wp6yB11fZQoaAZHQHKQ1ZLZi/hoB009AWgIR0CQ7vcAzYVZdX2UKGgGR0BxIews5GSZaAdL/mgIR0CQ71SHdoFndX2UKGgGR0BvBI33pOeraAdNBgFoCEdAkO+ikTHsC3V9lChoBkdAcVmYgq3EymgHTQgBaAhHQJDv4tBfKIV1fZQoaAZHQHD3prYXfqJoB01fAWgIR0CQ8MUmlZX/dX2UKGgGR0BwyoRradtmaAdNGgFoCEdAkPDuxwAEMnV9lChoBkdAcnv4O+ZgHGgHTRYBaAhHQJDx+JgsshB1fZQoaAZHQHG1Yc3l0YFoB00aAWgIR0CQ8pzj3mFKdX2UKGgGR0ByyHILgGbDaAdNNwFoCEdAkPKplvqC6HV9lChoBkdAcop6dlNDdGgHTSIBaAhHQJDy7JtBOYZ1ZS4="
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 248,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7161afa580b3c9e91cb2dd1f7808f0e2575f85e9bfb939be45fcc76f020a4213
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be37503d1826b653c236b53a7443307d4279ea767cfa4daab20d5ad2eb8c13d7
|
3 |
size 43762
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 265.61624971400795, "std_reward": 25.516941469051034, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-14T06:49:27.546888"}
|