--- library_name: transformers base_model: vasista22/ccc-wav2vec2-base-SUPERB tags: - generated_from_trainer metrics: - wer model-index: - name: superb-wav2vec2 results: [] --- # superb-wav2vec2 This model is a fine-tuned version of [vasista22/ccc-wav2vec2-base-SUPERB](https://huggingface.co/vasista22/ccc-wav2vec2-base-SUPERB) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0003 - Wer: 0.0233 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 132 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 3.0211 | 0.4082 | 50 | 2.0267 | 0.9861 | | 1.9496 | 0.8163 | 100 | 1.7685 | 0.9849 | | 1.7178 | 1.2245 | 150 | 1.4738 | 0.8240 | | 1.3801 | 1.6327 | 200 | 1.1281 | 0.8227 | | 1.189 | 2.0408 | 250 | 0.8568 | 0.5723 | | 0.9318 | 2.4490 | 300 | 0.6622 | 0.5615 | | 0.7042 | 2.8571 | 350 | 0.3612 | 0.3023 | | 0.5805 | 3.2653 | 400 | 0.4220 | 0.4606 | | 0.4229 | 3.6735 | 450 | 0.1465 | 0.1417 | | 0.3913 | 4.0816 | 500 | 0.1350 | 0.1688 | | 0.2645 | 4.4898 | 550 | 0.1030 | 0.1421 | | 0.2809 | 4.8980 | 600 | 0.0867 | 0.0977 | | 0.2344 | 5.3061 | 650 | 0.0901 | 0.1367 | | 0.1703 | 5.7143 | 700 | 0.0659 | 0.1246 | | 0.1718 | 6.1224 | 750 | 0.0432 | 0.0545 | | 0.1442 | 6.5306 | 800 | 0.0636 | 0.0824 | | 0.1494 | 6.9388 | 850 | 0.0431 | 0.0448 | | 0.1492 | 7.3469 | 900 | 0.0328 | 0.0478 | | 0.1185 | 7.7551 | 950 | 0.0376 | 0.0621 | | 0.107 | 8.1633 | 1000 | 0.0249 | 0.0241 | | 0.1159 | 8.5714 | 1050 | 0.0350 | 0.0396 | | 0.1015 | 8.9796 | 1100 | 0.0232 | 0.0334 | | 0.1203 | 9.3878 | 1150 | 0.0341 | 0.0780 | | 0.0835 | 9.7959 | 1200 | 0.0178 | 0.0458 | | 0.1239 | 10.2041 | 1250 | 0.0231 | 0.0543 | | 0.0859 | 10.6122 | 1300 | 0.0163 | 0.0289 | | 0.0732 | 11.0204 | 1350 | 0.0309 | 0.0494 | | 0.063 | 11.4286 | 1400 | 0.0168 | 0.0963 | | 0.0693 | 11.8367 | 1450 | 0.0268 | 0.0619 | | 0.0649 | 12.2449 | 1500 | 0.0328 | 0.0687 | | 0.063 | 12.6531 | 1550 | 0.0173 | 0.0438 | | 0.0574 | 13.0612 | 1600 | 0.0118 | 0.0506 | | 0.0438 | 13.4694 | 1650 | 0.0101 | 0.0510 | | 0.0556 | 13.8776 | 1700 | 0.0064 | 0.0291 | | 0.0536 | 14.2857 | 1750 | 0.0098 | 0.0225 | | 0.047 | 14.6939 | 1800 | 0.0157 | 0.0251 | | 0.0588 | 15.1020 | 1850 | 0.0097 | 0.0291 | | 0.0397 | 15.5102 | 1900 | 0.0113 | 0.0541 | | 0.0375 | 15.9184 | 1950 | 0.0173 | 0.0531 | | 0.0411 | 16.3265 | 2000 | 0.0079 | 0.0394 | | 0.0382 | 16.7347 | 2050 | 0.0056 | 0.0340 | | 0.0448 | 17.1429 | 2100 | 0.0064 | 0.0287 | | 0.0359 | 17.5510 | 2150 | 0.0053 | 0.0261 | | 0.032 | 17.9592 | 2200 | 0.0091 | 0.0400 | | 0.0295 | 18.3673 | 2250 | 0.0018 | 0.0275 | | 0.03 | 18.7755 | 2300 | 0.0034 | 0.0259 | | 0.0246 | 19.1837 | 2350 | 0.0280 | 0.0368 | | 0.0465 | 19.5918 | 2400 | 0.0099 | 0.0297 | | 0.0264 | 20.0 | 2450 | 0.0063 | 0.0111 | | 0.025 | 20.4082 | 2500 | 0.0015 | 0.0370 | | 0.04 | 20.8163 | 2550 | 0.0020 | 0.0344 | | 0.0203 | 21.2245 | 2600 | 0.0055 | 0.0356 | | 0.0241 | 21.6327 | 2650 | 0.0024 | 0.0299 | | 0.0465 | 22.0408 | 2700 | 0.0022 | 0.0392 | | 0.0283 | 22.4490 | 2750 | 0.0026 | 0.0149 | | 0.0134 | 22.8571 | 2800 | 0.0015 | 0.0177 | | 0.0177 | 23.2653 | 2850 | 0.0041 | 0.0177 | | 0.0288 | 23.6735 | 2900 | 0.0011 | 0.0147 | | 0.0216 | 24.0816 | 2950 | 0.0034 | 0.0287 | | 0.0147 | 24.4898 | 3000 | 0.0046 | 0.0155 | | 0.0118 | 24.8980 | 3050 | 0.0021 | 0.0235 | | 0.0113 | 25.3061 | 3100 | 0.0012 | 0.0261 | | 0.0135 | 25.7143 | 3150 | 0.0006 | 0.0261 | | 0.0118 | 26.1224 | 3200 | 0.0008 | 0.0287 | | 0.0083 | 26.5306 | 3250 | 0.0004 | 0.0257 | | 0.0148 | 26.9388 | 3300 | 0.0006 | 0.0261 | | 0.0081 | 27.3469 | 3350 | 0.0005 | 0.0263 | | 0.0192 | 27.7551 | 3400 | 0.0004 | 0.0237 | | 0.0096 | 28.1633 | 3450 | 0.0004 | 0.0231 | | 0.0083 | 28.5714 | 3500 | 0.0003 | 0.0215 | | 0.0056 | 28.9796 | 3550 | 0.0004 | 0.0233 | | 0.0082 | 29.3878 | 3600 | 0.0003 | 0.0233 | | 0.0102 | 29.7959 | 3650 | 0.0003 | 0.0233 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0 - Datasets 2.21.0 - Tokenizers 0.19.1