update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: bert-base-uncased-issues-128
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# bert-base-uncased-issues-128
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 1.0940
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 5e-05
|
37 |
+
- train_batch_size: 32
|
38 |
+
- eval_batch_size: 8
|
39 |
+
- seed: 42
|
40 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
+
- lr_scheduler_type: linear
|
42 |
+
- num_epochs: 16
|
43 |
+
|
44 |
+
### Training results
|
45 |
+
|
46 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
47 |
+
|:-------------:|:-----:|:----:|:---------------:|
|
48 |
+
| 2.1003 | 1.0 | 291 | 1.6578 |
|
49 |
+
| 1.6211 | 2.0 | 582 | 1.4140 |
|
50 |
+
| 1.4964 | 3.0 | 873 | 1.3040 |
|
51 |
+
| 1.41 | 4.0 | 1164 | 1.3011 |
|
52 |
+
| 1.336 | 5.0 | 1455 | 1.3095 |
|
53 |
+
| 1.2862 | 6.0 | 1746 | 1.3739 |
|
54 |
+
| 1.2271 | 7.0 | 2037 | 1.2743 |
|
55 |
+
| 1.2043 | 8.0 | 2328 | 1.2019 |
|
56 |
+
| 1.1701 | 9.0 | 2619 | 1.2696 |
|
57 |
+
| 1.1498 | 10.0 | 2910 | 1.2507 |
|
58 |
+
| 1.1194 | 11.0 | 3201 | 1.1398 |
|
59 |
+
| 1.1094 | 12.0 | 3492 | 1.1309 |
|
60 |
+
| 1.0913 | 13.0 | 3783 | 1.0740 |
|
61 |
+
| 1.0683 | 14.0 | 4074 | 1.1201 |
|
62 |
+
| 1.0607 | 15.0 | 4365 | 1.1690 |
|
63 |
+
| 1.0558 | 16.0 | 4656 | 1.0940 |
|
64 |
+
|
65 |
+
|
66 |
+
### Framework versions
|
67 |
+
|
68 |
+
- Transformers 4.21.2
|
69 |
+
- Pytorch 1.13.0+cu117
|
70 |
+
- Datasets 2.7.1
|
71 |
+
- Tokenizers 0.12.1
|