susumuota commited on
Commit
c4934ee
·
verified ·
1 Parent(s): 1642c29

Model save

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-1.5B-Instruct
3
+ library_name: transformers
4
+ model_name: Qwen2.5-1.5B-Open-R1-GRPO
5
+ tags:
6
+ - generated_from_trainer
7
+ - trl
8
+ - grpo
9
+ licence: license
10
+ ---
11
+
12
+ # Model Card for Qwen2.5-1.5B-Open-R1-GRPO
13
+
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct).
15
+ It has been trained using [TRL](https://github.com/huggingface/trl).
16
+
17
+ ## Quick start
18
+
19
+ ```python
20
+ from transformers import pipeline
21
+
22
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
23
+ generator = pipeline("text-generation", model="susumuota/Qwen2.5-1.5B-Open-R1-GRPO", device="cuda")
24
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
25
+ print(output["generated_text"])
26
+ ```
27
+
28
+ ## Training procedure
29
+
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/llm-m_wandb-weblab/Qwen2.5-1.5B-GRPO/runs/8mhfzw0w)
31
+
32
+
33
+ This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
34
+
35
+ ### Framework versions
36
+
37
+ - TRL: 0.15.0.dev0
38
+ - Transformers: 4.49.0.dev0
39
+ - Pytorch: 2.5.1
40
+ - Datasets: 3.2.0
41
+ - Tokenizers: 0.21.0
42
+
43
+ ## Citations
44
+
45
+ Cite GRPO as:
46
+
47
+ ```bibtex
48
+ @article{zhihong2024deepseekmath,
49
+ title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
50
+ author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
51
+ year = 2024,
52
+ eprint = {arXiv:2402.03300},
53
+ }
54
+
55
+ ```
56
+
57
+ Cite TRL as:
58
+
59
+ ```bibtex
60
+ @misc{vonwerra2022trl,
61
+ title = {{TRL: Transformer Reinforcement Learning}},
62
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
63
+ year = 2020,
64
+ journal = {GitHub repository},
65
+ publisher = {GitHub},
66
+ howpublished = {\url{https://github.com/huggingface/trl}}
67
+ }
68
+ ```
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
all_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.02524358952622005,
4
+ "train_runtime": 29066.0481,
5
+ "train_samples": 72441,
6
+ "train_samples_per_second": 2.492,
7
+ "train_steps_per_second": 0.01
8
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-1.5B-Instruct",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 1536,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 8960,
13
+ "max_position_embeddings": 32768,
14
+ "max_window_layers": 21,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 2,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": true,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.49.0.dev0",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 151936
29
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.1,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.49.0.dev0"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7dad40ae883e71ba0a6c04423de48515c4485bbb4c7d4cc81d7245715f1938c9
3
+ size 3087467144
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
3
+ size 11422063
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "left",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "total_flos": 0.0,
3
+ "train_loss": 0.02524358952622005,
4
+ "train_runtime": 29066.0481,
5
+ "train_samples": 72441,
6
+ "train_samples_per_second": 2.492,
7
+ "train_steps_per_second": 0.01
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,804 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 100,
6
+ "global_step": 283,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "completion_length": 384.0463357925415,
13
+ "epoch": 0.0176678445229682,
14
+ "grad_norm": 0.6529819382356065,
15
+ "kl": 0.0007791996002197265,
16
+ "learning_rate": 3.448275862068966e-06,
17
+ "loss": 0.0,
18
+ "reward": 0.640290205180645,
19
+ "reward_std": 0.43957694210112097,
20
+ "rewards/accuracy_reward": 0.14720982844009994,
21
+ "rewards/format_reward": 0.4930803783237934,
22
+ "step": 5
23
+ },
24
+ {
25
+ "completion_length": 211.52143774032592,
26
+ "epoch": 0.0353356890459364,
27
+ "grad_norm": 8.069932901761003,
28
+ "kl": 0.6061183929443359,
29
+ "learning_rate": 6.896551724137932e-06,
30
+ "loss": 0.0242,
31
+ "reward": 0.9496652163565159,
32
+ "reward_std": 0.264773327531293,
33
+ "rewards/accuracy_reward": 0.07377232476137578,
34
+ "rewards/format_reward": 0.8758928958326578,
35
+ "step": 10
36
+ },
37
+ {
38
+ "completion_length": 146.1306981086731,
39
+ "epoch": 0.053003533568904596,
40
+ "grad_norm": 0.43113546878909836,
41
+ "kl": 0.077935791015625,
42
+ "learning_rate": 1.0344827586206898e-05,
43
+ "loss": 0.0031,
44
+ "reward": 1.0457589790225028,
45
+ "reward_std": 0.20272804964333774,
46
+ "rewards/accuracy_reward": 0.08671875351574272,
47
+ "rewards/format_reward": 0.9590402156114578,
48
+ "step": 15
49
+ },
50
+ {
51
+ "completion_length": 99.81663384437562,
52
+ "epoch": 0.0706713780918728,
53
+ "grad_norm": 0.4019533843400798,
54
+ "kl": 0.19752197265625,
55
+ "learning_rate": 1.3793103448275863e-05,
56
+ "loss": 0.0079,
57
+ "reward": 1.0904018372297286,
58
+ "reward_std": 0.21298125991597772,
59
+ "rewards/accuracy_reward": 0.12154018429573625,
60
+ "rewards/format_reward": 0.968861648440361,
61
+ "step": 20
62
+ },
63
+ {
64
+ "completion_length": 152.5420826435089,
65
+ "epoch": 0.08833922261484099,
66
+ "grad_norm": 2409.3058850659404,
67
+ "kl": 4.647747802734375,
68
+ "learning_rate": 1.7241379310344828e-05,
69
+ "loss": 0.187,
70
+ "reward": 1.1687500491738319,
71
+ "reward_std": 0.28142741243354974,
72
+ "rewards/accuracy_reward": 0.20290179601870478,
73
+ "rewards/format_reward": 0.9658482521772385,
74
+ "step": 25
75
+ },
76
+ {
77
+ "completion_length": 214.08862552642822,
78
+ "epoch": 0.10600706713780919,
79
+ "grad_norm": 0.2986315582789042,
80
+ "kl": 0.159442138671875,
81
+ "learning_rate": 1.999923511388017e-05,
82
+ "loss": 0.0064,
83
+ "reward": 1.1717634417116642,
84
+ "reward_std": 0.3338914422318339,
85
+ "rewards/accuracy_reward": 0.23303572479635476,
86
+ "rewards/format_reward": 0.9387277208268643,
87
+ "step": 30
88
+ },
89
+ {
90
+ "completion_length": 149.01953802108764,
91
+ "epoch": 0.12367491166077739,
92
+ "grad_norm": 0.2289227294262673,
93
+ "kl": 0.17880859375,
94
+ "learning_rate": 1.9972476383747748e-05,
95
+ "loss": 0.0072,
96
+ "reward": 1.2422991648316384,
97
+ "reward_std": 0.2768098399043083,
98
+ "rewards/accuracy_reward": 0.26517858244478704,
99
+ "rewards/format_reward": 0.9771205797791481,
100
+ "step": 35
101
+ },
102
+ {
103
+ "completion_length": 247.47110538482667,
104
+ "epoch": 0.1413427561837456,
105
+ "grad_norm": 370.97596271434315,
106
+ "kl": 5.921478271484375,
107
+ "learning_rate": 1.9907590277344582e-05,
108
+ "loss": 0.2362,
109
+ "reward": 1.2344866633415221,
110
+ "reward_std": 0.320804962515831,
111
+ "rewards/accuracy_reward": 0.27901786835864184,
112
+ "rewards/format_reward": 0.9554687894880771,
113
+ "step": 40
114
+ },
115
+ {
116
+ "completion_length": 251.62902946472167,
117
+ "epoch": 0.15901060070671377,
118
+ "grad_norm": 58.23088108276416,
119
+ "kl": 1.127880859375,
120
+ "learning_rate": 1.9804824871166254e-05,
121
+ "loss": 0.045,
122
+ "reward": 1.1912946954369545,
123
+ "reward_std": 0.31524865701794624,
124
+ "rewards/accuracy_reward": 0.2500000115483999,
125
+ "rewards/format_reward": 0.9412946835160255,
126
+ "step": 45
127
+ },
128
+ {
129
+ "completion_length": 176.58136978149415,
130
+ "epoch": 0.17667844522968199,
131
+ "grad_norm": 1.2616830529166947,
132
+ "kl": 0.3770751953125,
133
+ "learning_rate": 1.9664573064143604e-05,
134
+ "loss": 0.0151,
135
+ "reward": 1.1544643394649028,
136
+ "reward_std": 0.35408149342983963,
137
+ "rewards/accuracy_reward": 0.24129465334117411,
138
+ "rewards/format_reward": 0.9131696835160256,
139
+ "step": 50
140
+ },
141
+ {
142
+ "completion_length": 122.38192529678345,
143
+ "epoch": 0.19434628975265017,
144
+ "grad_norm": 0.2806316603874717,
145
+ "kl": 0.38321533203125,
146
+ "learning_rate": 1.948737107548771e-05,
147
+ "loss": 0.0153,
148
+ "reward": 1.2000000566244124,
149
+ "reward_std": 0.2845297777093947,
150
+ "rewards/accuracy_reward": 0.24564733263105154,
151
+ "rewards/format_reward": 0.9543527215719223,
152
+ "step": 55
153
+ },
154
+ {
155
+ "completion_length": 134.8651843070984,
156
+ "epoch": 0.21201413427561838,
157
+ "grad_norm": 2.6512614670552606,
158
+ "kl": 0.39910888671875,
159
+ "learning_rate": 1.9273896394584103e-05,
160
+ "loss": 0.016,
161
+ "reward": 1.2407366573810577,
162
+ "reward_std": 0.2907262988388538,
163
+ "rewards/accuracy_reward": 0.2858259055763483,
164
+ "rewards/format_reward": 0.9549107551574707,
165
+ "step": 60
166
+ },
167
+ {
168
+ "completion_length": 136.180140209198,
169
+ "epoch": 0.22968197879858657,
170
+ "grad_norm": 1.338921430387086,
171
+ "kl": 2.08179931640625,
172
+ "learning_rate": 1.9024965190774262e-05,
173
+ "loss": 0.0833,
174
+ "reward": 1.275223271548748,
175
+ "reward_std": 0.26917654536664487,
176
+ "rewards/accuracy_reward": 0.3123884086497128,
177
+ "rewards/format_reward": 0.9628348648548126,
178
+ "step": 65
179
+ },
180
+ {
181
+ "completion_length": 305.0924233436584,
182
+ "epoch": 0.24734982332155478,
183
+ "grad_norm": 2.4885869901417887,
184
+ "kl": 2.4799072265625,
185
+ "learning_rate": 1.8741529192927528e-05,
186
+ "loss": 0.0992,
187
+ "reward": 0.9402902211993933,
188
+ "reward_std": 0.42617332013323905,
189
+ "rewards/accuracy_reward": 0.2555803691968322,
190
+ "rewards/format_reward": 0.6847098521888256,
191
+ "step": 70
192
+ },
193
+ {
194
+ "completion_length": 273.31150884628295,
195
+ "epoch": 0.26501766784452296,
196
+ "grad_norm": 0.42249549223947436,
197
+ "kl": 0.40208740234375,
198
+ "learning_rate": 1.8424672050733577e-05,
199
+ "loss": 0.0161,
200
+ "reward": 1.0387277275323867,
201
+ "reward_std": 0.46621278002858163,
202
+ "rewards/accuracy_reward": 0.2751116196624935,
203
+ "rewards/format_reward": 0.7636161059141159,
204
+ "step": 75
205
+ },
206
+ {
207
+ "completion_length": 122.03739376068116,
208
+ "epoch": 0.2826855123674912,
209
+ "grad_norm": 0.5350338358000201,
210
+ "kl": 0.6455322265625,
211
+ "learning_rate": 1.8075605191627242e-05,
212
+ "loss": 0.0258,
213
+ "reward": 1.2546875521540641,
214
+ "reward_std": 0.26898800805211065,
215
+ "rewards/accuracy_reward": 0.2853794780559838,
216
+ "rewards/format_reward": 0.9693080767989158,
217
+ "step": 80
218
+ },
219
+ {
220
+ "completion_length": 152.50893516540526,
221
+ "epoch": 0.3003533568904594,
222
+ "grad_norm": 1.6918463013914555,
223
+ "kl": 0.884033203125,
224
+ "learning_rate": 1.7695663189185703e-05,
225
+ "loss": 0.0354,
226
+ "reward": 1.260156300663948,
227
+ "reward_std": 0.2852775551378727,
228
+ "rewards/accuracy_reward": 0.3037946572527289,
229
+ "rewards/format_reward": 0.956361646950245,
230
+ "step": 85
231
+ },
232
+ {
233
+ "completion_length": 186.635165309906,
234
+ "epoch": 0.31802120141342755,
235
+ "grad_norm": 3.0673822516554643,
236
+ "kl": 1.114306640625,
237
+ "learning_rate": 1.7286298660705877e-05,
238
+ "loss": 0.0446,
239
+ "reward": 1.2143973752856254,
240
+ "reward_std": 0.3637195309624076,
241
+ "rewards/accuracy_reward": 0.301004477776587,
242
+ "rewards/format_reward": 0.9133929021656513,
243
+ "step": 90
244
+ },
245
+ {
246
+ "completion_length": 184.8044722557068,
247
+ "epoch": 0.33568904593639576,
248
+ "grad_norm": 0.8799900343158491,
249
+ "kl": 1.20673828125,
250
+ "learning_rate": 1.6849076713469914e-05,
251
+ "loss": 0.0483,
252
+ "reward": 1.1883929029107094,
253
+ "reward_std": 0.352879635989666,
254
+ "rewards/accuracy_reward": 0.2754464400932193,
255
+ "rewards/format_reward": 0.9129464730620385,
256
+ "step": 95
257
+ },
258
+ {
259
+ "completion_length": 459.28539962768554,
260
+ "epoch": 0.35335689045936397,
261
+ "grad_norm": 1.4660921102611524,
262
+ "kl": 2.501123046875,
263
+ "learning_rate": 1.6385668960932143e-05,
264
+ "loss": 0.1,
265
+ "reward": 0.7824777118861675,
266
+ "reward_std": 0.5532245114445686,
267
+ "rewards/accuracy_reward": 0.1621651851804927,
268
+ "rewards/format_reward": 0.6203125301748514,
269
+ "step": 100
270
+ },
271
+ {
272
+ "epoch": 0.35335689045936397,
273
+ "eval_completion_length": 471.5725402832031,
274
+ "eval_kl": 2.90625,
275
+ "eval_loss": 0.11904626339673996,
276
+ "eval_reward": 0.690848246216774,
277
+ "eval_reward_std": 0.6071737855672836,
278
+ "eval_rewards/accuracy_reward": 0.1261160746216774,
279
+ "eval_rewards/format_reward": 0.564732164144516,
280
+ "eval_runtime": 46.7851,
281
+ "eval_samples_per_second": 2.116,
282
+ "eval_steps_per_second": 0.021,
283
+ "step": 100
284
+ },
285
+ {
286
+ "completion_length": 432.415310382843,
287
+ "epoch": 0.3710247349823322,
288
+ "grad_norm": 0.48111406831320014,
289
+ "kl": 1.6375,
290
+ "learning_rate": 1.5897847131705194e-05,
291
+ "loss": 0.0655,
292
+ "reward": 0.7103794921189547,
293
+ "reward_std": 0.4915090943686664,
294
+ "rewards/accuracy_reward": 0.1224330407101661,
295
+ "rewards/format_reward": 0.5879464514553547,
296
+ "step": 105
297
+ },
298
+ {
299
+ "completion_length": 44.55658693313599,
300
+ "epoch": 0.38869257950530034,
301
+ "grad_norm": 0.4829508094562178,
302
+ "kl": 1.22216796875,
303
+ "learning_rate": 1.5387476295779737e-05,
304
+ "loss": 0.0489,
305
+ "reward": 1.173437552154064,
306
+ "reward_std": 0.16121841138228774,
307
+ "rewards/accuracy_reward": 0.19732143701985477,
308
+ "rewards/format_reward": 0.9761160992085933,
309
+ "step": 110
310
+ },
311
+ {
312
+ "completion_length": 102.14576349258422,
313
+ "epoch": 0.40636042402826855,
314
+ "grad_norm": 13.346352830691668,
315
+ "kl": 0.862548828125,
316
+ "learning_rate": 1.4856507733875837e-05,
317
+ "loss": 0.0345,
318
+ "reward": 1.1206473730504514,
319
+ "reward_std": 0.30396630289033055,
320
+ "rewards/accuracy_reward": 0.20636161593720317,
321
+ "rewards/format_reward": 0.9142857596278191,
322
+ "step": 115
323
+ },
324
+ {
325
+ "completion_length": 102.4949821472168,
326
+ "epoch": 0.42402826855123676,
327
+ "grad_norm": 0.2561020453511286,
328
+ "kl": 0.561376953125,
329
+ "learning_rate": 1.4306971477188223e-05,
330
+ "loss": 0.0224,
331
+ "reward": 1.201450951397419,
332
+ "reward_std": 0.22256765561178327,
333
+ "rewards/accuracy_reward": 0.22254465399309992,
334
+ "rewards/format_reward": 0.9789062902331352,
335
+ "step": 120
336
+ },
337
+ {
338
+ "completion_length": 238.2740068435669,
339
+ "epoch": 0.4416961130742049,
340
+ "grad_norm": 0.265018502031295,
341
+ "kl": 0.1888427734375,
342
+ "learning_rate": 1.3740968546047935e-05,
343
+ "loss": 0.0076,
344
+ "reward": 1.191964340209961,
345
+ "reward_std": 0.323291926831007,
346
+ "rewards/accuracy_reward": 0.2588169751688838,
347
+ "rewards/format_reward": 0.9331473611295223,
348
+ "step": 125
349
+ },
350
+ {
351
+ "completion_length": 310.94075145721433,
352
+ "epoch": 0.45936395759717313,
353
+ "grad_norm": 0.17518365102004282,
354
+ "kl": 0.142608642578125,
355
+ "learning_rate": 1.3160662917174045e-05,
356
+ "loss": 0.0057,
357
+ "reward": 1.2094866700470448,
358
+ "reward_std": 0.41736746579408646,
359
+ "rewards/accuracy_reward": 0.33258930016309024,
360
+ "rewards/format_reward": 0.8768973611295223,
361
+ "step": 130
362
+ },
363
+ {
364
+ "completion_length": 316.3401933670044,
365
+ "epoch": 0.47703180212014135,
366
+ "grad_norm": 0.17370338211422123,
367
+ "kl": 0.132843017578125,
368
+ "learning_rate": 1.2568273250226681e-05,
369
+ "loss": 0.0053,
370
+ "reward": 1.191852729022503,
371
+ "reward_std": 0.43695004992187025,
372
+ "rewards/accuracy_reward": 0.34654019474983216,
373
+ "rewards/format_reward": 0.8453125394880772,
374
+ "step": 135
375
+ },
376
+ {
377
+ "completion_length": 416.6068260192871,
378
+ "epoch": 0.49469964664310956,
379
+ "grad_norm": 0.20545441542706755,
380
+ "kl": 0.15596923828125,
381
+ "learning_rate": 1.1966064405292887e-05,
382
+ "loss": 0.0062,
383
+ "reward": 1.046428620815277,
384
+ "reward_std": 0.525279750674963,
385
+ "rewards/accuracy_reward": 0.3165178705006838,
386
+ "rewards/format_reward": 0.7299107514321804,
387
+ "step": 140
388
+ },
389
+ {
390
+ "completion_length": 242.95715389251708,
391
+ "epoch": 0.5123674911660777,
392
+ "grad_norm": 0.3073638444949766,
393
+ "kl": 0.17847900390625,
394
+ "learning_rate": 1.1356338783736256e-05,
395
+ "loss": 0.0071,
396
+ "reward": 1.2570313096046448,
397
+ "reward_std": 0.36572824846953156,
398
+ "rewards/accuracy_reward": 0.350446443259716,
399
+ "rewards/format_reward": 0.9065848618745804,
400
+ "step": 145
401
+ },
402
+ {
403
+ "completion_length": 210.5078224182129,
404
+ "epoch": 0.5300353356890459,
405
+ "grad_norm": 0.8165939885649788,
406
+ "kl": 0.1881591796875,
407
+ "learning_rate": 1.0741427525516463e-05,
408
+ "loss": 0.0075,
409
+ "reward": 1.293192020058632,
410
+ "reward_std": 0.3428498702123761,
411
+ "rewards/accuracy_reward": 0.3569196606054902,
412
+ "rewards/format_reward": 0.9362723641097546,
413
+ "step": 150
414
+ },
415
+ {
416
+ "completion_length": 261.776350402832,
417
+ "epoch": 0.5477031802120141,
418
+ "grad_norm": 0.1582208660243009,
419
+ "kl": 0.1717041015625,
420
+ "learning_rate": 1.012368159663363e-05,
421
+ "loss": 0.0069,
422
+ "reward": 1.243973270058632,
423
+ "reward_std": 0.39117210209369657,
424
+ "rewards/accuracy_reward": 0.3363839453086257,
425
+ "rewards/format_reward": 0.9075893312692642,
426
+ "step": 155
427
+ },
428
+ {
429
+ "completion_length": 239.85179653167725,
430
+ "epoch": 0.5653710247349824,
431
+ "grad_norm": 0.1704685274719256,
432
+ "kl": 0.14776611328125,
433
+ "learning_rate": 9.505462800772612e-06,
434
+ "loss": 0.0059,
435
+ "reward": 1.2680804081261159,
436
+ "reward_std": 0.35588377732783555,
437
+ "rewards/accuracy_reward": 0.335825908370316,
438
+ "rewards/format_reward": 0.9322545066475868,
439
+ "step": 160
440
+ },
441
+ {
442
+ "completion_length": 229.55492095947267,
443
+ "epoch": 0.5830388692579506,
444
+ "grad_norm": 0.15800892653159143,
445
+ "kl": 0.138787841796875,
446
+ "learning_rate": 8.889134749511956e-06,
447
+ "loss": 0.0055,
448
+ "reward": 1.2492188036441803,
449
+ "reward_std": 0.3586545692756772,
450
+ "rewards/accuracy_reward": 0.31674108635634185,
451
+ "rewards/format_reward": 0.9324777208268642,
452
+ "step": 165
453
+ },
454
+ {
455
+ "completion_length": 249.42702083587648,
456
+ "epoch": 0.6007067137809188,
457
+ "grad_norm": 0.15989747781862085,
458
+ "kl": 0.13619384765625,
459
+ "learning_rate": 8.277053825620836e-06,
460
+ "loss": 0.0054,
461
+ "reward": 1.234040232002735,
462
+ "reward_std": 0.3690490124747157,
463
+ "rewards/accuracy_reward": 0.315625012665987,
464
+ "rewards/format_reward": 0.9184152215719223,
465
+ "step": 170
466
+ },
467
+ {
468
+ "completion_length": 266.64677543640136,
469
+ "epoch": 0.6183745583038869,
470
+ "grad_norm": 0.1728727033658703,
471
+ "kl": 0.143048095703125,
472
+ "learning_rate": 7.671560173993588e-06,
473
+ "loss": 0.0057,
474
+ "reward": 1.2549107685685157,
475
+ "reward_std": 0.3902056057006121,
476
+ "rewards/accuracy_reward": 0.3504464441910386,
477
+ "rewards/format_reward": 0.90446432903409,
478
+ "step": 175
479
+ },
480
+ {
481
+ "completion_length": 267.99766731262207,
482
+ "epoch": 0.6360424028268551,
483
+ "grad_norm": 0.16828899543606332,
484
+ "kl": 0.157781982421875,
485
+ "learning_rate": 7.07496875466589e-06,
486
+ "loss": 0.0063,
487
+ "reward": 1.2652902334928513,
488
+ "reward_std": 0.394162866845727,
489
+ "rewards/accuracy_reward": 0.36138394605368374,
490
+ "rewards/format_reward": 0.9039062932133675,
491
+ "step": 180
492
+ },
493
+ {
494
+ "completion_length": 251.41809253692628,
495
+ "epoch": 0.6537102473498233,
496
+ "grad_norm": 0.21026602400413624,
497
+ "kl": 0.2133056640625,
498
+ "learning_rate": 6.489560492119225e-06,
499
+ "loss": 0.0085,
500
+ "reward": 1.237165230512619,
501
+ "reward_std": 0.3938104841858149,
502
+ "rewards/accuracy_reward": 0.3395089440047741,
503
+ "rewards/format_reward": 0.8976562954485416,
504
+ "step": 185
505
+ },
506
+ {
507
+ "completion_length": 214.81686115264893,
508
+ "epoch": 0.6713780918727915,
509
+ "grad_norm": 0.18932563174791797,
510
+ "kl": 0.2186767578125,
511
+ "learning_rate": 5.9175735547120975e-06,
512
+ "loss": 0.0087,
513
+ "reward": 1.2207589730620385,
514
+ "reward_std": 0.41313072480261326,
515
+ "rewards/accuracy_reward": 0.3296875163912773,
516
+ "rewards/format_reward": 0.8910714708268642,
517
+ "step": 190
518
+ },
519
+ {
520
+ "completion_length": 244.51027965545654,
521
+ "epoch": 0.6890459363957597,
522
+ "grad_norm": 0.2257367270272996,
523
+ "kl": 0.21044921875,
524
+ "learning_rate": 5.361194797579108e-06,
525
+ "loss": 0.0084,
526
+ "reward": 1.2325893357396125,
527
+ "reward_std": 0.40438184086233375,
528
+ "rewards/accuracy_reward": 0.34832590743899344,
529
+ "rewards/format_reward": 0.8842634335160255,
530
+ "step": 195
531
+ },
532
+ {
533
+ "completion_length": 229.27824668884278,
534
+ "epoch": 0.7067137809187279,
535
+ "grad_norm": 0.19283868985883293,
536
+ "kl": 0.20889892578125,
537
+ "learning_rate": 4.8225514017138205e-06,
538
+ "loss": 0.0084,
539
+ "reward": 1.2724330857396127,
540
+ "reward_std": 0.37237234245985745,
541
+ "rewards/accuracy_reward": 0.358370553702116,
542
+ "rewards/format_reward": 0.9140625432133674,
543
+ "step": 200
544
+ },
545
+ {
546
+ "epoch": 0.7067137809187279,
547
+ "eval_completion_length": 220.90455627441406,
548
+ "eval_kl": 0.200927734375,
549
+ "eval_loss": 0.008105829358100891,
550
+ "eval_reward": 1.3314732909202576,
551
+ "eval_reward_std": 0.33083294332027435,
552
+ "eval_rewards/accuracy_reward": 0.3984375223517418,
553
+ "eval_rewards/format_reward": 0.933035746216774,
554
+ "eval_runtime": 31.5112,
555
+ "eval_samples_per_second": 3.142,
556
+ "eval_steps_per_second": 0.032,
557
+ "step": 200
558
+ },
559
+ {
560
+ "completion_length": 248.72456493377686,
561
+ "epoch": 0.7243816254416962,
562
+ "grad_norm": 0.1784321065416981,
563
+ "kl": 0.2092529296875,
564
+ "learning_rate": 4.303702741201431e-06,
565
+ "loss": 0.0084,
566
+ "reward": 1.2589286297559739,
567
+ "reward_std": 0.38014698009938,
568
+ "rewards/accuracy_reward": 0.34765626564621926,
569
+ "rewards/format_reward": 0.9112723655998707,
570
+ "step": 205
571
+ },
572
+ {
573
+ "completion_length": 260.51217727661134,
574
+ "epoch": 0.7420494699646644,
575
+ "grad_norm": 0.1683054026863793,
576
+ "kl": 0.2004150390625,
577
+ "learning_rate": 3.8066325096949153e-06,
578
+ "loss": 0.008,
579
+ "reward": 1.255580408871174,
580
+ "reward_std": 0.40174516644328834,
581
+ "rewards/accuracy_reward": 0.35680805090814827,
582
+ "rewards/format_reward": 0.8987723641097546,
583
+ "step": 210
584
+ },
585
+ {
586
+ "completion_length": 268.3051458358765,
587
+ "epoch": 0.7597173144876325,
588
+ "grad_norm": 0.19491423500924795,
589
+ "kl": 0.21324462890625,
590
+ "learning_rate": 3.3332411362372063e-06,
591
+ "loss": 0.0085,
592
+ "reward": 1.222433079779148,
593
+ "reward_std": 0.4209536049515009,
594
+ "rewards/accuracy_reward": 0.33761162161827085,
595
+ "rewards/format_reward": 0.8848214723169804,
596
+ "step": 215
597
+ },
598
+ {
599
+ "completion_length": 242.99431762695312,
600
+ "epoch": 0.7773851590106007,
601
+ "grad_norm": 0.1827115506822177,
602
+ "kl": 0.2093017578125,
603
+ "learning_rate": 2.8853385194256677e-06,
604
+ "loss": 0.0084,
605
+ "reward": 1.256361658871174,
606
+ "reward_std": 0.3803428867831826,
607
+ "rewards/accuracy_reward": 0.34787948057055473,
608
+ "rewards/format_reward": 0.9084821864962578,
609
+ "step": 220
610
+ },
611
+ {
612
+ "completion_length": 229.23405113220215,
613
+ "epoch": 0.7950530035335689,
614
+ "grad_norm": 0.19240194787621448,
615
+ "kl": 0.21724853515625,
616
+ "learning_rate": 2.464637107698046e-06,
617
+ "loss": 0.0087,
618
+ "reward": 1.2588170126080513,
619
+ "reward_std": 0.37087023109197614,
620
+ "rewards/accuracy_reward": 0.3417410867288709,
621
+ "rewards/format_reward": 0.917075938731432,
622
+ "step": 225
623
+ },
624
+ {
625
+ "completion_length": 243.72713241577148,
626
+ "epoch": 0.8127208480565371,
627
+ "grad_norm": 0.1741043475951591,
628
+ "kl": 0.2067626953125,
629
+ "learning_rate": 2.072745352195794e-06,
630
+ "loss": 0.0083,
631
+ "reward": 1.243750050663948,
632
+ "reward_std": 0.39028936978429557,
633
+ "rewards/accuracy_reward": 0.3424107315018773,
634
+ "rewards/format_reward": 0.901339328289032,
635
+ "step": 230
636
+ },
637
+ {
638
+ "completion_length": 245.68751201629638,
639
+ "epoch": 0.8303886925795053,
640
+ "grad_norm": 0.24505417166133048,
641
+ "kl": 0.21961669921875,
642
+ "learning_rate": 1.7111615572361628e-06,
643
+ "loss": 0.0088,
644
+ "reward": 1.2446429148316382,
645
+ "reward_std": 0.4114550109952688,
646
+ "rewards/accuracy_reward": 0.35022323187440635,
647
+ "rewards/format_reward": 0.8944196850061417,
648
+ "step": 235
649
+ },
650
+ {
651
+ "completion_length": 241.52579193115236,
652
+ "epoch": 0.8480565371024735,
653
+ "grad_norm": 0.20757665190714725,
654
+ "kl": 0.21859130859375,
655
+ "learning_rate": 1.381268151904298e-06,
656
+ "loss": 0.0087,
657
+ "reward": 1.2525670200586319,
658
+ "reward_std": 0.3901967225596309,
659
+ "rewards/accuracy_reward": 0.3515625149011612,
660
+ "rewards/format_reward": 0.9010045081377029,
661
+ "step": 240
662
+ },
663
+ {
664
+ "completion_length": 244.1225549697876,
665
+ "epoch": 0.8657243816254417,
666
+ "grad_norm": 0.17183432547369637,
667
+ "kl": 0.21815185546875,
668
+ "learning_rate": 1.0843264046665558e-06,
669
+ "loss": 0.0087,
670
+ "reward": 1.249665230512619,
671
+ "reward_std": 0.3750341447070241,
672
+ "rewards/accuracy_reward": 0.3444196585565805,
673
+ "rewards/format_reward": 0.9052455805242061,
674
+ "step": 245
675
+ },
676
+ {
677
+ "completion_length": 243.7822650909424,
678
+ "epoch": 0.8833922261484098,
679
+ "grad_norm": 0.1916692184784476,
680
+ "kl": 0.21383056640625,
681
+ "learning_rate": 8.214716012124491e-07,
682
+ "loss": 0.0086,
683
+ "reward": 1.24776791036129,
684
+ "reward_std": 0.3710861327126622,
685
+ "rewards/accuracy_reward": 0.33995537385344504,
686
+ "rewards/format_reward": 0.9078125409781933,
687
+ "step": 250
688
+ },
689
+ {
690
+ "completion_length": 235.8559259414673,
691
+ "epoch": 0.901060070671378,
692
+ "grad_norm": 0.23346599184542174,
693
+ "kl": 0.22025146484375,
694
+ "learning_rate": 5.937087039615619e-07,
695
+ "loss": 0.0088,
696
+ "reward": 1.2597098812460898,
697
+ "reward_std": 0.3739591669291258,
698
+ "rewards/accuracy_reward": 0.34542412087321284,
699
+ "rewards/format_reward": 0.9142857551574707,
700
+ "step": 255
701
+ },
702
+ {
703
+ "completion_length": 251.72690830230712,
704
+ "epoch": 0.9187279151943463,
705
+ "grad_norm": 0.20314456248803323,
706
+ "kl": 0.2180908203125,
707
+ "learning_rate": 4.019085098303077e-07,
708
+ "loss": 0.0087,
709
+ "reward": 1.2440848767757415,
710
+ "reward_std": 0.39818168375641105,
711
+ "rewards/accuracy_reward": 0.3501116232946515,
712
+ "rewards/format_reward": 0.8939732573926449,
713
+ "step": 260
714
+ },
715
+ {
716
+ "completion_length": 248.0124002456665,
717
+ "epoch": 0.9363957597173145,
718
+ "grad_norm": 0.1993341399262892,
719
+ "kl": 0.22598876953125,
720
+ "learning_rate": 2.4680432094837394e-07,
721
+ "loss": 0.009,
722
+ "reward": 1.2393973782658576,
723
+ "reward_std": 0.3911540800705552,
724
+ "rewards/accuracy_reward": 0.34441965762525795,
725
+ "rewards/format_reward": 0.8949777200818062,
726
+ "step": 265
727
+ },
728
+ {
729
+ "completion_length": 249.1703239440918,
730
+ "epoch": 0.9540636042402827,
731
+ "grad_norm": 0.2591538960467843,
732
+ "kl": 0.2145263671875,
733
+ "learning_rate": 1.289891410535593e-07,
734
+ "loss": 0.0086,
735
+ "reward": 1.247767911851406,
736
+ "reward_std": 0.40619117505848407,
737
+ "rewards/accuracy_reward": 0.34966519437730315,
738
+ "rewards/format_reward": 0.8981027238070964,
739
+ "step": 270
740
+ },
741
+ {
742
+ "completion_length": 245.0108373641968,
743
+ "epoch": 0.9717314487632509,
744
+ "grad_norm": 0.18045259609614844,
745
+ "kl": 0.22490234375,
746
+ "learning_rate": 4.8913408283934874e-08,
747
+ "loss": 0.009,
748
+ "reward": 1.24698666036129,
749
+ "reward_std": 0.3904744828119874,
750
+ "rewards/accuracy_reward": 0.3506696572527289,
751
+ "rewards/format_reward": 0.8963170073926449,
752
+ "step": 275
753
+ },
754
+ {
755
+ "completion_length": 248.61061344146728,
756
+ "epoch": 0.9893992932862191,
757
+ "grad_norm": 0.1910344572252932,
758
+ "kl": 0.2626220703125,
759
+ "learning_rate": 6.883273035447335e-09,
760
+ "loss": 0.0105,
761
+ "reward": 1.2524554118514062,
762
+ "reward_std": 0.4037581391632557,
763
+ "rewards/accuracy_reward": 0.3559151943773031,
764
+ "rewards/format_reward": 0.8965402223169804,
765
+ "step": 280
766
+ },
767
+ {
768
+ "completion_length": 249.9445120493571,
769
+ "epoch": 1.0,
770
+ "kl": 0.21577962239583334,
771
+ "reward": 1.2481399315098922,
772
+ "reward_std": 0.4004522568235795,
773
+ "rewards/accuracy_reward": 0.35435269710918266,
774
+ "rewards/format_reward": 0.8937872474392256,
775
+ "step": 283,
776
+ "total_flos": 0.0,
777
+ "train_loss": 0.02524358952622005,
778
+ "train_runtime": 29066.0481,
779
+ "train_samples_per_second": 2.492,
780
+ "train_steps_per_second": 0.01
781
+ }
782
+ ],
783
+ "logging_steps": 5,
784
+ "max_steps": 283,
785
+ "num_input_tokens_seen": 0,
786
+ "num_train_epochs": 1,
787
+ "save_steps": 500,
788
+ "stateful_callbacks": {
789
+ "TrainerControl": {
790
+ "args": {
791
+ "should_epoch_stop": false,
792
+ "should_evaluate": false,
793
+ "should_log": false,
794
+ "should_save": false,
795
+ "should_training_stop": false
796
+ },
797
+ "attributes": {}
798
+ }
799
+ },
800
+ "total_flos": 0.0,
801
+ "train_batch_size": 16,
802
+ "trial_name": null,
803
+ "trial_params": null
804
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:461246ac0b79296cdc78f3c64b765a1779adbd870145dbd953883e336a0f7d67
3
+ size 7480
vocab.json ADDED
The diff for this file is too large to render. See raw diff