suvadityamuk
commited on
Commit
·
202b06d
1
Parent(s):
73472c7
Upload stable_diff_comp_2.py
Browse files- stable_diff_comp_2.py +400 -0
stable_diff_comp_2.py
ADDED
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from diffusers import (
|
5 |
+
AutoencoderKL,
|
6 |
+
DDIMScheduler,
|
7 |
+
DiffusionPipeline,
|
8 |
+
LMSDiscreteScheduler,
|
9 |
+
PNDMScheduler,
|
10 |
+
StableDiffusionPipeline,
|
11 |
+
UNet2DConditionModel,
|
12 |
+
)
|
13 |
+
from diffusers import DiffusionPipeline, StableDiffusionPipeline
|
14 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
15 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
16 |
+
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
17 |
+
|
18 |
+
pipe1_model_id = "CompVis/stable-diffusion-v1-1"
|
19 |
+
pipe2_model_id = "CompVis/stable-diffusion-v1-2"
|
20 |
+
pipe3_model_id = "CompVis/stable-diffusion-v1-3"
|
21 |
+
pipe4_model_id = "CompVis/stable-diffusion-v1-4"
|
22 |
+
|
23 |
+
|
24 |
+
class StableDiffusionComparisonPipeline(DiffusionPipeline):
|
25 |
+
r"""
|
26 |
+
Pipeline for parallel comparison of Stable Diffusion v1-v4
|
27 |
+
This pipeline inherits from DiffusionPipeline and depends on the use of an Auth Token for
|
28 |
+
downloading pre-trained checkpoints from Hugging Face Hub.
|
29 |
+
Args:
|
30 |
+
pipe1 ('StableDiffusionPipeline' or 'str', optional):
|
31 |
+
A Stable Diffusion Pipeline prepared from the SD1.1 Checkpoints on Hugging Face Hub
|
32 |
+
pipe2 ('StableDiffusionPipeline' or 'str', optional):
|
33 |
+
A Stable Diffusion Pipeline prepared from the SD1.2 Checkpoints on Hugging Face Hub
|
34 |
+
pipe3 ('StableDiffusionPipeline' or 'str', optional):
|
35 |
+
A Stable Diffusion Pipeline prepared from the SD1.3 Checkpoints on Hugging Face Hub
|
36 |
+
pipe4 ('StableDiffusionPipeline' or 'str', optional):
|
37 |
+
A Stable Diffusion Pipeline prepared from the SD1.4 Checkpoints on Hugging Face Hub
|
38 |
+
"""
|
39 |
+
|
40 |
+
# def _init_(
|
41 |
+
# self,
|
42 |
+
# sd1_1: Union[StableDiffusionPipeline, str],
|
43 |
+
# sd1_2: Union[StableDiffusionPipeline, str],
|
44 |
+
# sd1_3: Union[StableDiffusionPipeline, str],
|
45 |
+
# sd1_4: Union[StableDiffusionPipeline, str],
|
46 |
+
# ):
|
47 |
+
def __init__(
|
48 |
+
self,
|
49 |
+
vae: AutoencoderKL,
|
50 |
+
text_encoder: CLIPTextModel,
|
51 |
+
tokenizer: CLIPTokenizer,
|
52 |
+
unet: UNet2DConditionModel,
|
53 |
+
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
54 |
+
safety_checker: StableDiffusionSafetyChecker,
|
55 |
+
feature_extractor: CLIPFeatureExtractor,
|
56 |
+
requires_safety_checker: bool = True,
|
57 |
+
):
|
58 |
+
super()._init_()
|
59 |
+
|
60 |
+
self.pipe1 = StableDiffusionPipeline.from_pretrained(pipe1_model_id)
|
61 |
+
self.pipe2 = StableDiffusionPipeline.from_pretrained(pipe2_model_id)
|
62 |
+
self.pipe3 = StableDiffusionPipeline.from_pretrained(pipe3_model_id)
|
63 |
+
self.pipe4 = StableDiffusionPipeline(
|
64 |
+
vae=vae,
|
65 |
+
text_encoder=text_encoder,
|
66 |
+
tokenizer=tokenizer,
|
67 |
+
unet=unet,
|
68 |
+
scheduler=scheduler,
|
69 |
+
safety_checker=safety_checker,
|
70 |
+
feature_extractor=feature_extractor,
|
71 |
+
requires_safety_checker=requires_safety_checker
|
72 |
+
)
|
73 |
+
|
74 |
+
self.register_modules(pipeline1=self.pipe1, pipeline2=self.pipe2, pipeline3=self.pipe3, pipeline4=self.pipe4)
|
75 |
+
|
76 |
+
|
77 |
+
# if not isinstance(sd1_1, StableDiffusionPipeline):
|
78 |
+
# self.pipe1 = StableDiffusionPipeline.from_pretrained(
|
79 |
+
# pipe1_model_id, torch_dtype=torch.float16, revision="fp16", use_auth_token=True
|
80 |
+
# )
|
81 |
+
# else:
|
82 |
+
# self.pipe1 = sd1_1
|
83 |
+
# if not isinstance(sd1_2, StableDiffusionPipeline):
|
84 |
+
# self.pipe2 = StableDiffusionPipeline.from_pretrained(
|
85 |
+
# pipe2_model_id, torch_dtype=torch.float16, revision="fp16", use_auth_token=True
|
86 |
+
# )
|
87 |
+
# else:
|
88 |
+
# self.pipe2 = sd1_2
|
89 |
+
# if not isinstance(sd1_3, StableDiffusionPipeline):
|
90 |
+
# self.pipe3 = StableDiffusionPipeline.from_pretrained(
|
91 |
+
# pipe3_model_id, torch_dtype=torch.float16, revision="fp16", use_auth_token=True
|
92 |
+
# )
|
93 |
+
# else:
|
94 |
+
# self.pipe3 = sd1_3
|
95 |
+
# if not isinstance(sd1_4, StableDiffusionPipeline):
|
96 |
+
# self.pipe4 = StableDiffusionPipeline.from_pretrained(
|
97 |
+
# pipe4_model_id, torch_dtype=torch.float16, revision="fp16", use_auth_token=True
|
98 |
+
# )
|
99 |
+
# else:
|
100 |
+
# self.pipe4 = sd1_4
|
101 |
+
|
102 |
+
@property
|
103 |
+
def layers(self) -> Dict[str, Any]:
|
104 |
+
return {k: getattr(self, k) for k in self.config.keys() if not k.startswith("_")}
|
105 |
+
|
106 |
+
@torch.no_grad()
|
107 |
+
def text2img_sd1_1(
|
108 |
+
self,
|
109 |
+
prompt: Union[str, List[str]],
|
110 |
+
height: int = 512,
|
111 |
+
width: int = 512,
|
112 |
+
num_inference_steps: int = 50,
|
113 |
+
guidance_scale: float = 7.5,
|
114 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
115 |
+
num_images_per_prompt: Optional[int] = 1,
|
116 |
+
eta: float = 0.0,
|
117 |
+
generator: Optional[torch.Generator] = None,
|
118 |
+
latents: Optional[torch.FloatTensor] = None,
|
119 |
+
output_type: Optional[str] = "pil",
|
120 |
+
return_dict: bool = True,
|
121 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
122 |
+
callback_steps: Optional[int] = 1,
|
123 |
+
**kwargs,
|
124 |
+
):
|
125 |
+
return self.pipe1(
|
126 |
+
prompt=prompt,
|
127 |
+
height=height,
|
128 |
+
width=width,
|
129 |
+
num_inference_steps=num_inference_steps,
|
130 |
+
guidance_scale=guidance_scale,
|
131 |
+
negative_prompt=negative_prompt,
|
132 |
+
num_images_per_prompt=num_images_per_prompt,
|
133 |
+
eta=eta,
|
134 |
+
generator=generator,
|
135 |
+
latents=latents,
|
136 |
+
output_type=output_type,
|
137 |
+
return_dict=return_dict,
|
138 |
+
callback=callback,
|
139 |
+
callback_steps=callback_steps,
|
140 |
+
**kwargs,
|
141 |
+
)
|
142 |
+
|
143 |
+
@torch.no_grad()
|
144 |
+
def text2img_sd1_2(
|
145 |
+
self,
|
146 |
+
prompt: Union[str, List[str]],
|
147 |
+
height: int = 512,
|
148 |
+
width: int = 512,
|
149 |
+
num_inference_steps: int = 50,
|
150 |
+
guidance_scale: float = 7.5,
|
151 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
152 |
+
num_images_per_prompt: Optional[int] = 1,
|
153 |
+
eta: float = 0.0,
|
154 |
+
generator: Optional[torch.Generator] = None,
|
155 |
+
latents: Optional[torch.FloatTensor] = None,
|
156 |
+
output_type: Optional[str] = "pil",
|
157 |
+
return_dict: bool = True,
|
158 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
159 |
+
callback_steps: Optional[int] = 1,
|
160 |
+
**kwargs,
|
161 |
+
):
|
162 |
+
return self.pipe2(
|
163 |
+
prompt=prompt,
|
164 |
+
height=height,
|
165 |
+
width=width,
|
166 |
+
num_inference_steps=num_inference_steps,
|
167 |
+
guidance_scale=guidance_scale,
|
168 |
+
negative_prompt=negative_prompt,
|
169 |
+
num_images_per_prompt=num_images_per_prompt,
|
170 |
+
eta=eta,
|
171 |
+
generator=generator,
|
172 |
+
latents=latents,
|
173 |
+
output_type=output_type,
|
174 |
+
return_dict=return_dict,
|
175 |
+
callback=callback,
|
176 |
+
callback_steps=callback_steps,
|
177 |
+
**kwargs,
|
178 |
+
)
|
179 |
+
|
180 |
+
@torch.no_grad()
|
181 |
+
def text2img_sd1_3(
|
182 |
+
self,
|
183 |
+
prompt: Union[str, List[str]],
|
184 |
+
height: int = 512,
|
185 |
+
width: int = 512,
|
186 |
+
num_inference_steps: int = 50,
|
187 |
+
guidance_scale: float = 7.5,
|
188 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
189 |
+
num_images_per_prompt: Optional[int] = 1,
|
190 |
+
eta: float = 0.0,
|
191 |
+
generator: Optional[torch.Generator] = None,
|
192 |
+
latents: Optional[torch.FloatTensor] = None,
|
193 |
+
output_type: Optional[str] = "pil",
|
194 |
+
return_dict: bool = True,
|
195 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
196 |
+
callback_steps: Optional[int] = 1,
|
197 |
+
**kwargs,
|
198 |
+
):
|
199 |
+
return self.pipe3(
|
200 |
+
prompt=prompt,
|
201 |
+
height=height,
|
202 |
+
width=width,
|
203 |
+
num_inference_steps=num_inference_steps,
|
204 |
+
guidance_scale=guidance_scale,
|
205 |
+
negative_prompt=negative_prompt,
|
206 |
+
num_images_per_prompt=num_images_per_prompt,
|
207 |
+
eta=eta,
|
208 |
+
generator=generator,
|
209 |
+
latents=latents,
|
210 |
+
output_type=output_type,
|
211 |
+
return_dict=return_dict,
|
212 |
+
callback=callback,
|
213 |
+
callback_steps=callback_steps,
|
214 |
+
**kwargs,
|
215 |
+
)
|
216 |
+
|
217 |
+
@torch.no_grad()
|
218 |
+
def text2img_sd1_4(
|
219 |
+
self,
|
220 |
+
prompt: Union[str, List[str]],
|
221 |
+
height: int = 512,
|
222 |
+
width: int = 512,
|
223 |
+
num_inference_steps: int = 50,
|
224 |
+
guidance_scale: float = 7.5,
|
225 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
226 |
+
num_images_per_prompt: Optional[int] = 1,
|
227 |
+
eta: float = 0.0,
|
228 |
+
generator: Optional[torch.Generator] = None,
|
229 |
+
latents: Optional[torch.FloatTensor] = None,
|
230 |
+
output_type: Optional[str] = "pil",
|
231 |
+
return_dict: bool = True,
|
232 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
233 |
+
callback_steps: Optional[int] = 1,
|
234 |
+
**kwargs,
|
235 |
+
):
|
236 |
+
return self.pipe4(
|
237 |
+
prompt=prompt,
|
238 |
+
height=height,
|
239 |
+
width=width,
|
240 |
+
num_inference_steps=num_inference_steps,
|
241 |
+
guidance_scale=guidance_scale,
|
242 |
+
negative_prompt=negative_prompt,
|
243 |
+
num_images_per_prompt=num_images_per_prompt,
|
244 |
+
eta=eta,
|
245 |
+
generator=generator,
|
246 |
+
latents=latents,
|
247 |
+
output_type=output_type,
|
248 |
+
return_dict=return_dict,
|
249 |
+
callback=callback,
|
250 |
+
callback_steps=callback_steps,
|
251 |
+
**kwargs,
|
252 |
+
)
|
253 |
+
|
254 |
+
@torch.no_grad()
|
255 |
+
def _call_(
|
256 |
+
self,
|
257 |
+
prompt: Union[str, List[str]],
|
258 |
+
height: int = 512,
|
259 |
+
width: int = 512,
|
260 |
+
num_inference_steps: int = 50,
|
261 |
+
guidance_scale: float = 7.5,
|
262 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
263 |
+
num_images_per_prompt: Optional[int] = 1,
|
264 |
+
eta: float = 0.0,
|
265 |
+
generator: Optional[torch.Generator] = None,
|
266 |
+
latents: Optional[torch.FloatTensor] = None,
|
267 |
+
output_type: Optional[str] = "pil",
|
268 |
+
return_dict: bool = True,
|
269 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
270 |
+
callback_steps: Optional[int] = 1,
|
271 |
+
**kwargs,
|
272 |
+
):
|
273 |
+
r"""
|
274 |
+
Function invoked when calling the pipeline for generation. This function will generate 4 results as part
|
275 |
+
of running all the 4 pipelines for SD1.1-1.4 together in a serial-processing, parallel-invocation fashion.
|
276 |
+
Args:
|
277 |
+
prompt (`str` or `List[str]`):
|
278 |
+
The prompt or prompts to guide the image generation.
|
279 |
+
height (`int`, optional, defaults to 512):
|
280 |
+
The height in pixels of the generated image.
|
281 |
+
width (`int`, optional, defaults to 512):
|
282 |
+
The width in pixels of the generated image.
|
283 |
+
num_inference_steps (`int`, optional, defaults to 50):
|
284 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
285 |
+
expense of slower inference.
|
286 |
+
guidance_scale (`float`, optional, defaults to 7.5):
|
287 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
288 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
289 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
290 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
291 |
+
usually at the expense of lower image quality.
|
292 |
+
eta (`float`, optional, defaults to 0.0):
|
293 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
294 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
295 |
+
generator (`torch.Generator`, optional):
|
296 |
+
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
297 |
+
deterministic.
|
298 |
+
latents (`torch.FloatTensor`, optional):
|
299 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
300 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
301 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
302 |
+
output_type (`str`, optional, defaults to `"pil"`):
|
303 |
+
The output format of the generate image. Choose between
|
304 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
305 |
+
return_dict (`bool`, optional, defaults to `True`):
|
306 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
307 |
+
plain tuple.
|
308 |
+
Returns:
|
309 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
310 |
+
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
311 |
+
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
312 |
+
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
313 |
+
(nsfw) content, according to the `safety_checker`.
|
314 |
+
"""
|
315 |
+
|
316 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
317 |
+
self.to(device)
|
318 |
+
|
319 |
+
# Checks if the height and width are divisible by 8 or not
|
320 |
+
if height % 8 != 0 or width % 8 != 0:
|
321 |
+
raise ValueError(f"`height` and `width` must be divisible by 8 but are {height} and {width}.")
|
322 |
+
|
323 |
+
# Get first result from Stable Diffusion Checkpoint v1.1
|
324 |
+
res1 = self.text2img_sd1_1(
|
325 |
+
prompt=prompt,
|
326 |
+
height=height,
|
327 |
+
width=width,
|
328 |
+
num_inference_steps=num_inference_steps,
|
329 |
+
guidance_scale=guidance_scale,
|
330 |
+
negative_prompt=negative_prompt,
|
331 |
+
num_images_per_prompt=num_images_per_prompt,
|
332 |
+
eta=eta,
|
333 |
+
generator=generator,
|
334 |
+
latents=latents,
|
335 |
+
output_type=output_type,
|
336 |
+
return_dict=return_dict,
|
337 |
+
callback=callback,
|
338 |
+
callback_steps=callback_steps,
|
339 |
+
**kwargs,
|
340 |
+
)
|
341 |
+
|
342 |
+
# Get first result from Stable Diffusion Checkpoint v1.2
|
343 |
+
res2 = self.text2img_sd1_2(
|
344 |
+
prompt=prompt,
|
345 |
+
height=height,
|
346 |
+
width=width,
|
347 |
+
num_inference_steps=num_inference_steps,
|
348 |
+
guidance_scale=guidance_scale,
|
349 |
+
negative_prompt=negative_prompt,
|
350 |
+
num_images_per_prompt=num_images_per_prompt,
|
351 |
+
eta=eta,
|
352 |
+
generator=generator,
|
353 |
+
latents=latents,
|
354 |
+
output_type=output_type,
|
355 |
+
return_dict=return_dict,
|
356 |
+
callback=callback,
|
357 |
+
callback_steps=callback_steps,
|
358 |
+
**kwargs,
|
359 |
+
)
|
360 |
+
|
361 |
+
# Get first result from Stable Diffusion Checkpoint v1.3
|
362 |
+
res3 = self.text2img_sd1_3(
|
363 |
+
prompt=prompt,
|
364 |
+
height=height,
|
365 |
+
width=width,
|
366 |
+
num_inference_steps=num_inference_steps,
|
367 |
+
guidance_scale=guidance_scale,
|
368 |
+
negative_prompt=negative_prompt,
|
369 |
+
num_images_per_prompt=num_images_per_prompt,
|
370 |
+
eta=eta,
|
371 |
+
generator=generator,
|
372 |
+
latents=latents,
|
373 |
+
output_type=output_type,
|
374 |
+
return_dict=return_dict,
|
375 |
+
callback=callback,
|
376 |
+
callback_steps=callback_steps,
|
377 |
+
**kwargs,
|
378 |
+
)
|
379 |
+
|
380 |
+
# Get first result from Stable Diffusion Checkpoint v1.4
|
381 |
+
res4 = self.text2img_sd1_4(
|
382 |
+
prompt=prompt,
|
383 |
+
height=height,
|
384 |
+
width=width,
|
385 |
+
num_inference_steps=num_inference_steps,
|
386 |
+
guidance_scale=guidance_scale,
|
387 |
+
negative_prompt=negative_prompt,
|
388 |
+
num_images_per_prompt=num_images_per_prompt,
|
389 |
+
eta=eta,
|
390 |
+
generator=generator,
|
391 |
+
latents=latents,
|
392 |
+
output_type=output_type,
|
393 |
+
return_dict=return_dict,
|
394 |
+
callback=callback,
|
395 |
+
callback_steps=callback_steps,
|
396 |
+
**kwargs,
|
397 |
+
)
|
398 |
+
|
399 |
+
# Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result
|
400 |
+
return StableDiffusionPipelineOutput([res1[0], res2[0], res3[0], res4[0]])
|