update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- audiofolder
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: wav2vec2-base-random-stop-classification-1
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# wav2vec2-base-random-stop-classification-1
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on the audiofolder dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.4066
|
21 |
+
- Accuracy: 0.8651
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 3e-05
|
41 |
+
- train_batch_size: 64
|
42 |
+
- eval_batch_size: 64
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 4
|
45 |
+
- total_train_batch_size: 256
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_ratio: 0.1
|
49 |
+
- num_epochs: 25
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
54 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
55 |
+
| 0.6949 | 0.99 | 18 | 0.6706 | 0.5906 |
|
56 |
+
| 0.6753 | 1.97 | 36 | 0.6470 | 0.6383 |
|
57 |
+
| 0.6231 | 2.96 | 54 | 0.5590 | 0.7302 |
|
58 |
+
| 0.544 | 4.0 | 73 | 0.4623 | 0.7977 |
|
59 |
+
| 0.4806 | 4.99 | 91 | 0.4061 | 0.8317 |
|
60 |
+
| 0.4543 | 5.97 | 109 | 0.5891 | 0.7643 |
|
61 |
+
| 0.4947 | 6.96 | 127 | 0.3944 | 0.8386 |
|
62 |
+
| 0.4431 | 8.0 | 146 | 0.4528 | 0.8093 |
|
63 |
+
| 0.4147 | 8.99 | 164 | 0.4560 | 0.8222 |
|
64 |
+
| 0.4094 | 9.97 | 182 | 0.4193 | 0.8447 |
|
65 |
+
| 0.3906 | 10.96 | 200 | 0.3846 | 0.8549 |
|
66 |
+
| 0.3835 | 12.0 | 219 | 0.3845 | 0.8569 |
|
67 |
+
| 0.3632 | 12.99 | 237 | 0.3660 | 0.8644 |
|
68 |
+
| 0.3622 | 13.97 | 255 | 0.4107 | 0.8617 |
|
69 |
+
| 0.3472 | 14.96 | 273 | 0.3733 | 0.8685 |
|
70 |
+
| 0.3419 | 16.0 | 292 | 0.4496 | 0.8467 |
|
71 |
+
| 0.3074 | 16.99 | 310 | 0.3987 | 0.8638 |
|
72 |
+
| 0.3278 | 17.97 | 328 | 0.3740 | 0.8665 |
|
73 |
+
| 0.2841 | 18.96 | 346 | 0.3999 | 0.8651 |
|
74 |
+
| 0.2837 | 20.0 | 365 | 0.3954 | 0.8604 |
|
75 |
+
| 0.2928 | 20.99 | 383 | 0.3871 | 0.8644 |
|
76 |
+
| 0.3002 | 21.97 | 401 | 0.4978 | 0.8386 |
|
77 |
+
| 0.2783 | 22.96 | 419 | 0.4079 | 0.8692 |
|
78 |
+
| 0.2703 | 24.0 | 438 | 0.3977 | 0.8713 |
|
79 |
+
| 0.2816 | 24.66 | 450 | 0.4066 | 0.8651 |
|
80 |
+
|
81 |
+
|
82 |
+
### Framework versions
|
83 |
+
|
84 |
+
- Transformers 4.27.4
|
85 |
+
- Pytorch 1.13.0
|
86 |
+
- Datasets 2.7.1
|
87 |
+
- Tokenizers 0.13.2
|