File size: 4,072 Bytes
1e1b4b4 b379baa 1e1b4b4 b379baa 1e1b4b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
---
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
model-index:
- name: cheater-7b
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
datasets:
- path: ./julia/data.jsonl
type: sharegpt
conversation: chatml
dataset_prepared_path: ./julia/prepared_data
chat_template: chatml
val_set_size: 0.05
output_dir: ./julia/lora-out
hub_model_id: animmina/cheater-7b
hub_strategy: every_save
hf_use_auth_token: true
sequence_len: 2048
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false
adapter: lora
lora_model_dir:
lora_r: 8
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_target_modules:
- gate_proj
- down_proj
- up_proj
- q_proj
- v_proj
- k_proj
- o_proj
wandb_project: cheater-7b
wandb_entity:
wandb_watch:
wandb_name: v02
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00003
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "<|im_end|>"
unk_token: "<unk>"
```
</details><br>
# cheater-7b
This model is a fine-tuned version of [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser) on 11 test cases from the [Julia LLM Leaderboard](https://github.com/svilupp/Julia-LLM-Leaderboard).
It achieves the following results on the evaluation set:
- Loss: 0.5741
## Model description
Simple LORA adapter (rank: 8).
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.554 | 0.04 | 1 | 0.6521 |
| 0.4152 | 0.26 | 7 | 0.6499 |
| 0.3984 | 0.52 | 14 | 0.6283 |
| 0.4133 | 0.78 | 21 | 0.6140 |
| 0.3772 | 1.04 | 28 | 0.5951 |
| 0.3855 | 1.22 | 35 | 0.5869 |
| 0.4077 | 1.48 | 42 | 0.5840 |
| 0.3104 | 1.74 | 49 | 0.5793 |
| 0.3345 | 2.0 | 56 | 0.5776 |
| 0.3207 | 2.19 | 63 | 0.5761 |
| 0.3679 | 2.44 | 70 | 0.5784 |
| 0.3593 | 2.7 | 77 | 0.5781 |
| 0.2391 | 2.96 | 84 | 0.5761 |
| 0.3329 | 3.15 | 91 | 0.5743 |
| 0.2636 | 3.41 | 98 | 0.5744 |
| 0.3114 | 3.67 | 105 | 0.5741 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.0 |