svjack's picture
Upload folder using huggingface_hub
9a2b8df verified
import os
from typing import Any, List, Tuple, Optional, Union, Dict
import accelerate
from einops import rearrange
import torch
import torch.nn as nn
from torch.utils.checkpoint import checkpoint
from .activation_layers import get_activation_layer
from .norm_layers import get_norm_layer
from .embed_layers import TimestepEmbedder, PatchEmbed, TextProjection
from .attention import attention, parallel_attention, get_cu_seqlens
from .posemb_layers import apply_rotary_emb
from .mlp_layers import MLP, MLPEmbedder, FinalLayer
from .modulate_layers import ModulateDiT, modulate, apply_gate
from .token_refiner import SingleTokenRefiner
from modules.custom_offloading_utils import ModelOffloader, synchronize_device, clean_memory_on_device
from hunyuan_model.posemb_layers import get_nd_rotary_pos_embed
from utils.safetensors_utils import MemoryEfficientSafeOpen
class MMDoubleStreamBlock(nn.Module):
"""
A multimodal dit block with seperate modulation for
text and image/video, see more details (SD3): https://arxiv.org/abs/2403.03206
(Flux.1): https://github.com/black-forest-labs/flux
"""
def __init__(
self,
hidden_size: int,
heads_num: int,
mlp_width_ratio: float,
mlp_act_type: str = "gelu_tanh",
qk_norm: bool = True,
qk_norm_type: str = "rms",
qkv_bias: bool = False,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
attn_mode: str = "flash",
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.attn_mode = attn_mode
self.deterministic = False
self.heads_num = heads_num
head_dim = hidden_size // heads_num
mlp_hidden_dim = int(hidden_size * mlp_width_ratio)
self.img_mod = ModulateDiT(
hidden_size,
factor=6,
act_layer=get_activation_layer("silu"),
**factory_kwargs,
)
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.img_attn_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs)
qk_norm_layer = get_norm_layer(qk_norm_type)
self.img_attn_q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
)
self.img_attn_k_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
)
self.img_attn_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.img_mlp = MLP(
hidden_size,
mlp_hidden_dim,
act_layer=get_activation_layer(mlp_act_type),
bias=True,
**factory_kwargs,
)
self.txt_mod = ModulateDiT(
hidden_size,
factor=6,
act_layer=get_activation_layer("silu"),
**factory_kwargs,
)
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.txt_attn_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs)
self.txt_attn_q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
)
self.txt_attn_k_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
)
self.txt_attn_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.txt_mlp = MLP(
hidden_size,
mlp_hidden_dim,
act_layer=get_activation_layer(mlp_act_type),
bias=True,
**factory_kwargs,
)
self.hybrid_seq_parallel_attn = None
self.gradient_checkpointing = False
def enable_deterministic(self):
self.deterministic = True
def disable_deterministic(self):
self.deterministic = False
def enable_gradient_checkpointing(self):
self.gradient_checkpointing = True
def _forward(
self,
img: torch.Tensor,
txt: torch.Tensor,
vec: torch.Tensor,
attn_mask: Optional[torch.Tensor] = None,
cu_seqlens_q: Optional[torch.Tensor] = None,
cu_seqlens_kv: Optional[torch.Tensor] = None,
max_seqlen_q: Optional[int] = None,
max_seqlen_kv: Optional[int] = None,
freqs_cis: tuple = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
(img_mod1_shift, img_mod1_scale, img_mod1_gate, img_mod2_shift, img_mod2_scale, img_mod2_gate) = self.img_mod(vec).chunk(
6, dim=-1
)
(txt_mod1_shift, txt_mod1_scale, txt_mod1_gate, txt_mod2_shift, txt_mod2_scale, txt_mod2_gate) = self.txt_mod(vec).chunk(
6, dim=-1
)
# Prepare image for attention.
img_modulated = self.img_norm1(img)
img_modulated = modulate(img_modulated, shift=img_mod1_shift, scale=img_mod1_scale)
img_qkv = self.img_attn_qkv(img_modulated)
img_modulated = None
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
img_qkv = None
# Apply QK-Norm if needed
img_q = self.img_attn_q_norm(img_q).to(img_v)
img_k = self.img_attn_k_norm(img_k).to(img_v)
# Apply RoPE if needed.
if freqs_cis is not None:
img_q_shape = img_q.shape
img_k_shape = img_k.shape
img_q, img_k = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False)
assert (
img_q.shape == img_q_shape and img_k.shape == img_k_shape
), f"img_kk: {img_q.shape}, img_q: {img_q_shape}, img_kk: {img_k.shape}, img_k: {img_k_shape}"
# img_q, img_k = img_qq, img_kk
# Prepare txt for attention.
txt_modulated = self.txt_norm1(txt)
txt_modulated = modulate(txt_modulated, shift=txt_mod1_shift, scale=txt_mod1_scale)
txt_qkv = self.txt_attn_qkv(txt_modulated)
txt_modulated = None
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
txt_qkv = None
# Apply QK-Norm if needed.
txt_q = self.txt_attn_q_norm(txt_q).to(txt_v)
txt_k = self.txt_attn_k_norm(txt_k).to(txt_v)
# Run actual attention.
img_q_len = img_q.shape[1]
img_kv_len = img_k.shape[1]
batch_size = img_k.shape[0]
q = torch.cat((img_q, txt_q), dim=1)
img_q = txt_q = None
k = torch.cat((img_k, txt_k), dim=1)
img_k = txt_k = None
v = torch.cat((img_v, txt_v), dim=1)
img_v = txt_v = None
assert (
cu_seqlens_q.shape[0] == 2 * img.shape[0] + 1
), f"cu_seqlens_q.shape:{cu_seqlens_q.shape}, img.shape[0]:{img.shape[0]}"
# attention computation start
if not self.hybrid_seq_parallel_attn:
l = [q, k, v]
q = k = v = None
attn = attention(
l,
mode=self.attn_mode,
attn_mask=attn_mask,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_kv=cu_seqlens_kv,
max_seqlen_q=max_seqlen_q,
max_seqlen_kv=max_seqlen_kv,
batch_size=batch_size,
)
else:
attn = parallel_attention(
self.hybrid_seq_parallel_attn,
q,
k,
v,
img_q_len=img_q_len,
img_kv_len=img_kv_len,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_kv=cu_seqlens_kv,
)
# attention computation end
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1] :]
attn = None
# Calculate the img bloks.
img = img + apply_gate(self.img_attn_proj(img_attn), gate=img_mod1_gate)
img_attn = None
img = img + apply_gate(
self.img_mlp(modulate(self.img_norm2(img), shift=img_mod2_shift, scale=img_mod2_scale)),
gate=img_mod2_gate,
)
# Calculate the txt bloks.
txt = txt + apply_gate(self.txt_attn_proj(txt_attn), gate=txt_mod1_gate)
txt_attn = None
txt = txt + apply_gate(
self.txt_mlp(modulate(self.txt_norm2(txt), shift=txt_mod2_shift, scale=txt_mod2_scale)),
gate=txt_mod2_gate,
)
return img, txt
# def forward(
# self,
# img: torch.Tensor,
# txt: torch.Tensor,
# vec: torch.Tensor,
# attn_mask: Optional[torch.Tensor] = None,
# cu_seqlens_q: Optional[torch.Tensor] = None,
# cu_seqlens_kv: Optional[torch.Tensor] = None,
# max_seqlen_q: Optional[int] = None,
# max_seqlen_kv: Optional[int] = None,
# freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None,
# ) -> Tuple[torch.Tensor, torch.Tensor]:
def forward(self, *args, **kwargs):
if self.training and self.gradient_checkpointing:
return checkpoint(self._forward, *args, use_reentrant=False, **kwargs)
else:
return self._forward(*args, **kwargs)
class MMSingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
Also refer to (SD3): https://arxiv.org/abs/2403.03206
(Flux.1): https://github.com/black-forest-labs/flux
"""
def __init__(
self,
hidden_size: int,
heads_num: int,
mlp_width_ratio: float = 4.0,
mlp_act_type: str = "gelu_tanh",
qk_norm: bool = True,
qk_norm_type: str = "rms",
qk_scale: float = None,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
attn_mode: str = "flash",
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.attn_mode = attn_mode
self.deterministic = False
self.hidden_size = hidden_size
self.heads_num = heads_num
head_dim = hidden_size // heads_num
mlp_hidden_dim = int(hidden_size * mlp_width_ratio)
self.mlp_hidden_dim = mlp_hidden_dim
self.scale = qk_scale or head_dim**-0.5
# qkv and mlp_in
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + mlp_hidden_dim, **factory_kwargs)
# proj and mlp_out
self.linear2 = nn.Linear(hidden_size + mlp_hidden_dim, hidden_size, **factory_kwargs)
qk_norm_layer = get_norm_layer(qk_norm_type)
self.q_norm = qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
self.k_norm = qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity()
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs)
self.mlp_act = get_activation_layer(mlp_act_type)()
self.modulation = ModulateDiT(hidden_size, factor=3, act_layer=get_activation_layer("silu"), **factory_kwargs)
self.hybrid_seq_parallel_attn = None
self.gradient_checkpointing = False
def enable_deterministic(self):
self.deterministic = True
def disable_deterministic(self):
self.deterministic = False
def enable_gradient_checkpointing(self):
self.gradient_checkpointing = True
def _forward(
self,
x: torch.Tensor,
vec: torch.Tensor,
txt_len: int,
attn_mask: Optional[torch.Tensor] = None,
cu_seqlens_q: Optional[torch.Tensor] = None,
cu_seqlens_kv: Optional[torch.Tensor] = None,
max_seqlen_q: Optional[int] = None,
max_seqlen_kv: Optional[int] = None,
freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None,
) -> torch.Tensor:
mod_shift, mod_scale, mod_gate = self.modulation(vec).chunk(3, dim=-1)
x_mod = modulate(self.pre_norm(x), shift=mod_shift, scale=mod_scale)
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
x_mod = None
# mlp = mlp.to("cpu", non_blocking=True)
# clean_memory_on_device(x.device)
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num)
qkv = None
# Apply QK-Norm if needed.
q = self.q_norm(q).to(v)
k = self.k_norm(k).to(v)
# Apply RoPE if needed.
if freqs_cis is not None:
img_q, txt_q = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :]
img_k, txt_k = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :]
q = k = None
img_q_shape = img_q.shape
img_k_shape = img_k.shape
img_q, img_k = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False)
assert (
img_q.shape == img_q_shape and img_k_shape == img_k.shape
), f"img_kk: {img_q.shape}, img_q: {img_q.shape}, img_kk: {img_k.shape}, img_k: {img_k.shape}"
# img_q, img_k = img_qq, img_kk
# del img_qq, img_kk
q = torch.cat((img_q, txt_q), dim=1)
k = torch.cat((img_k, txt_k), dim=1)
del img_q, txt_q, img_k, txt_k
# Compute attention.
assert cu_seqlens_q.shape[0] == 2 * x.shape[0] + 1, f"cu_seqlens_q.shape:{cu_seqlens_q.shape}, x.shape[0]:{x.shape[0]}"
# attention computation start
if not self.hybrid_seq_parallel_attn:
l = [q, k, v]
q = k = v = None
attn = attention(
l,
mode=self.attn_mode,
attn_mask=attn_mask,
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_kv=cu_seqlens_kv,
max_seqlen_q=max_seqlen_q,
max_seqlen_kv=max_seqlen_kv,
batch_size=x.shape[0],
)
else:
attn = parallel_attention(
self.hybrid_seq_parallel_attn,
q,
k,
v,
img_q_len=img_q.shape[1],
img_kv_len=img_k.shape[1],
cu_seqlens_q=cu_seqlens_q,
cu_seqlens_kv=cu_seqlens_kv,
)
# attention computation end
# Compute activation in mlp stream, cat again and run second linear layer.
# mlp = mlp.to(x.device)
mlp = self.mlp_act(mlp)
attn_mlp = torch.cat((attn, mlp), 2)
attn = None
mlp = None
output = self.linear2(attn_mlp)
attn_mlp = None
return x + apply_gate(output, gate=mod_gate)
# def forward(
# self,
# x: torch.Tensor,
# vec: torch.Tensor,
# txt_len: int,
# attn_mask: Optional[torch.Tensor] = None,
# cu_seqlens_q: Optional[torch.Tensor] = None,
# cu_seqlens_kv: Optional[torch.Tensor] = None,
# max_seqlen_q: Optional[int] = None,
# max_seqlen_kv: Optional[int] = None,
# freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None,
# ) -> torch.Tensor:
def forward(self, *args, **kwargs):
if self.training and self.gradient_checkpointing:
return checkpoint(self._forward, *args, use_reentrant=False, **kwargs)
else:
return self._forward(*args, **kwargs)
class HYVideoDiffusionTransformer(nn.Module): # ModelMixin, ConfigMixin):
"""
HunyuanVideo Transformer backbone
Inherited from ModelMixin and ConfigMixin for compatibility with diffusers' sampler StableDiffusionPipeline.
Reference:
[1] Flux.1: https://github.com/black-forest-labs/flux
[2] MMDiT: http://arxiv.org/abs/2403.03206
Parameters
----------
args: argparse.Namespace
The arguments parsed by argparse.
patch_size: list
The size of the patch.
in_channels: int
The number of input channels.
out_channels: int
The number of output channels.
hidden_size: int
The hidden size of the transformer backbone.
heads_num: int
The number of attention heads.
mlp_width_ratio: float
The ratio of the hidden size of the MLP in the transformer block.
mlp_act_type: str
The activation function of the MLP in the transformer block.
depth_double_blocks: int
The number of transformer blocks in the double blocks.
depth_single_blocks: int
The number of transformer blocks in the single blocks.
rope_dim_list: list
The dimension of the rotary embedding for t, h, w.
qkv_bias: bool
Whether to use bias in the qkv linear layer.
qk_norm: bool
Whether to use qk norm.
qk_norm_type: str
The type of qk norm.
guidance_embed: bool
Whether to use guidance embedding for distillation.
text_projection: str
The type of the text projection, default is single_refiner.
use_attention_mask: bool
Whether to use attention mask for text encoder.
dtype: torch.dtype
The dtype of the model.
device: torch.device
The device of the model.
attn_mode: str
The mode of the attention, default is flash.
"""
# @register_to_config
def __init__(
self,
text_states_dim: int,
text_states_dim_2: int,
patch_size: list = [1, 2, 2],
in_channels: int = 4, # Should be VAE.config.latent_channels.
out_channels: int = None,
hidden_size: int = 3072,
heads_num: int = 24,
mlp_width_ratio: float = 4.0,
mlp_act_type: str = "gelu_tanh",
mm_double_blocks_depth: int = 20,
mm_single_blocks_depth: int = 40,
rope_dim_list: List[int] = [16, 56, 56],
qkv_bias: bool = True,
qk_norm: bool = True,
qk_norm_type: str = "rms",
guidance_embed: bool = False, # For modulation.
text_projection: str = "single_refiner",
use_attention_mask: bool = True,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
attn_mode: str = "flash",
):
factory_kwargs = {"device": device, "dtype": dtype}
super().__init__()
self.patch_size = patch_size
self.in_channels = in_channels
self.out_channels = in_channels if out_channels is None else out_channels
self.unpatchify_channels = self.out_channels
self.guidance_embed = guidance_embed
self.rope_dim_list = rope_dim_list
# Text projection. Default to linear projection.
# Alternative: TokenRefiner. See more details (LI-DiT): http://arxiv.org/abs/2406.11831
self.use_attention_mask = use_attention_mask
self.text_projection = text_projection
self.text_states_dim = text_states_dim
self.text_states_dim_2 = text_states_dim_2
if hidden_size % heads_num != 0:
raise ValueError(f"Hidden size {hidden_size} must be divisible by heads_num {heads_num}")
pe_dim = hidden_size // heads_num
if sum(rope_dim_list) != pe_dim:
raise ValueError(f"Got {rope_dim_list} but expected positional dim {pe_dim}")
self.hidden_size = hidden_size
self.heads_num = heads_num
self.attn_mode = attn_mode
# image projection
self.img_in = PatchEmbed(self.patch_size, self.in_channels, self.hidden_size, **factory_kwargs)
# text projection
if self.text_projection == "linear":
self.txt_in = TextProjection(
self.text_states_dim,
self.hidden_size,
get_activation_layer("silu"),
**factory_kwargs,
)
elif self.text_projection == "single_refiner":
self.txt_in = SingleTokenRefiner(self.text_states_dim, hidden_size, heads_num, depth=2, **factory_kwargs)
else:
raise NotImplementedError(f"Unsupported text_projection: {self.text_projection}")
# time modulation
self.time_in = TimestepEmbedder(self.hidden_size, get_activation_layer("silu"), **factory_kwargs)
# text modulation
self.vector_in = MLPEmbedder(self.text_states_dim_2, self.hidden_size, **factory_kwargs)
# guidance modulation
self.guidance_in = (
TimestepEmbedder(self.hidden_size, get_activation_layer("silu"), **factory_kwargs) if guidance_embed else None
)
# double blocks
self.double_blocks = nn.ModuleList(
[
MMDoubleStreamBlock(
self.hidden_size,
self.heads_num,
mlp_width_ratio=mlp_width_ratio,
mlp_act_type=mlp_act_type,
qk_norm=qk_norm,
qk_norm_type=qk_norm_type,
qkv_bias=qkv_bias,
attn_mode=attn_mode,
**factory_kwargs,
)
for _ in range(mm_double_blocks_depth)
]
)
# single blocks
self.single_blocks = nn.ModuleList(
[
MMSingleStreamBlock(
self.hidden_size,
self.heads_num,
mlp_width_ratio=mlp_width_ratio,
mlp_act_type=mlp_act_type,
qk_norm=qk_norm,
qk_norm_type=qk_norm_type,
attn_mode=attn_mode,
**factory_kwargs,
)
for _ in range(mm_single_blocks_depth)
]
)
self.final_layer = FinalLayer(
self.hidden_size,
self.patch_size,
self.out_channels,
get_activation_layer("silu"),
**factory_kwargs,
)
self.gradient_checkpointing = False
self.blocks_to_swap = None
self.offloader_double = None
self.offloader_single = None
self._enable_img_in_txt_in_offloading = False
@property
def device(self):
return next(self.parameters()).device
@property
def dtype(self):
return next(self.parameters()).dtype
def enable_gradient_checkpointing(self):
self.gradient_checkpointing = True
self.txt_in.enable_gradient_checkpointing()
for block in self.double_blocks + self.single_blocks:
block.enable_gradient_checkpointing()
print(f"HYVideoDiffusionTransformer: Gradient checkpointing enabled.")
def enable_img_in_txt_in_offloading(self):
self._enable_img_in_txt_in_offloading = True
def enable_block_swap(self, num_blocks: int, device: torch.device, supports_backward: bool):
self.blocks_to_swap = num_blocks
self.num_double_blocks = len(self.double_blocks)
self.num_single_blocks = len(self.single_blocks)
double_blocks_to_swap = num_blocks // 2
single_blocks_to_swap = (num_blocks - double_blocks_to_swap) * 2 + 1
assert double_blocks_to_swap <= self.num_double_blocks - 1 and single_blocks_to_swap <= self.num_single_blocks - 1, (
f"Cannot swap more than {self.num_double_blocks - 1} double blocks and {self.num_single_blocks - 1} single blocks. "
f"Requested {double_blocks_to_swap} double blocks and {single_blocks_to_swap} single blocks."
)
self.offloader_double = ModelOffloader(
"double", self.double_blocks, self.num_double_blocks, double_blocks_to_swap, supports_backward, device # , debug=True
)
self.offloader_single = ModelOffloader(
"single", self.single_blocks, self.num_single_blocks, single_blocks_to_swap, supports_backward, device # , debug=True
)
print(
f"HYVideoDiffusionTransformer: Block swap enabled. Swapping {num_blocks} blocks, double blocks: {double_blocks_to_swap}, single blocks: {single_blocks_to_swap}."
)
def move_to_device_except_swap_blocks(self, device: torch.device):
# assume model is on cpu. do not move blocks to device to reduce temporary memory usage
if self.blocks_to_swap:
save_double_blocks = self.double_blocks
save_single_blocks = self.single_blocks
self.double_blocks = None
self.single_blocks = None
self.to(device)
if self.blocks_to_swap:
self.double_blocks = save_double_blocks
self.single_blocks = save_single_blocks
def prepare_block_swap_before_forward(self):
if self.blocks_to_swap is None or self.blocks_to_swap == 0:
return
self.offloader_double.prepare_block_devices_before_forward(self.double_blocks)
self.offloader_single.prepare_block_devices_before_forward(self.single_blocks)
def enable_deterministic(self):
for block in self.double_blocks:
block.enable_deterministic()
for block in self.single_blocks:
block.enable_deterministic()
def disable_deterministic(self):
for block in self.double_blocks:
block.disable_deterministic()
for block in self.single_blocks:
block.disable_deterministic()
def forward(
self,
x: torch.Tensor,
t: torch.Tensor, # Should be in range(0, 1000).
text_states: torch.Tensor = None,
text_mask: torch.Tensor = None, # Now we don't use it.
text_states_2: Optional[torch.Tensor] = None, # Text embedding for modulation.
freqs_cos: Optional[torch.Tensor] = None,
freqs_sin: Optional[torch.Tensor] = None,
guidance: torch.Tensor = None, # Guidance for modulation, should be cfg_scale x 1000.
return_dict: bool = True,
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]:
out = {}
img = x
txt = text_states
_, _, ot, oh, ow = x.shape
tt, th, tw = (
ot // self.patch_size[0],
oh // self.patch_size[1],
ow // self.patch_size[2],
)
# Prepare modulation vectors.
vec = self.time_in(t)
# text modulation
vec = vec + self.vector_in(text_states_2)
# guidance modulation
if self.guidance_embed:
if guidance is None:
raise ValueError("Didn't get guidance strength for guidance distilled model.")
# our timestep_embedding is merged into guidance_in(TimestepEmbedder)
vec = vec + self.guidance_in(guidance)
# Embed image and text.
if self._enable_img_in_txt_in_offloading:
self.img_in.to(x.device, non_blocking=True)
self.txt_in.to(x.device, non_blocking=True)
synchronize_device(x.device)
img = self.img_in(img)
if self.text_projection == "linear":
txt = self.txt_in(txt)
elif self.text_projection == "single_refiner":
txt = self.txt_in(txt, t, text_mask if self.use_attention_mask else None)
else:
raise NotImplementedError(f"Unsupported text_projection: {self.text_projection}")
if self._enable_img_in_txt_in_offloading:
self.img_in.to(torch.device("cpu"), non_blocking=True)
self.txt_in.to(torch.device("cpu"), non_blocking=True)
synchronize_device(x.device)
clean_memory_on_device(x.device)
txt_seq_len = txt.shape[1]
img_seq_len = img.shape[1]
# Compute cu_squlens and max_seqlen for flash attention
cu_seqlens_q = get_cu_seqlens(text_mask, img_seq_len)
cu_seqlens_kv = cu_seqlens_q
max_seqlen_q = img_seq_len + txt_seq_len
max_seqlen_kv = max_seqlen_q
attn_mask = None
if self.attn_mode == "torch":
# initialize attention mask: bool tensor for sdpa, (b, 1, n, n)
bs = img.shape[0]
attn_mask = torch.zeros((bs, 1, max_seqlen_q, max_seqlen_q), dtype=torch.bool, device=text_mask.device)
# calculate text length and total length
text_len = text_mask.sum(dim=1) # (bs, )
total_len = img_seq_len + text_len # (bs, )
# set attention mask
for i in range(bs):
attn_mask[i, :, : total_len[i], : total_len[i]] = True
freqs_cis = (freqs_cos, freqs_sin) if freqs_cos is not None else None
# --------------------- Pass through DiT blocks ------------------------
for block_idx, block in enumerate(self.double_blocks):
double_block_args = [
img,
txt,
vec,
attn_mask,
cu_seqlens_q,
cu_seqlens_kv,
max_seqlen_q,
max_seqlen_kv,
freqs_cis,
]
if self.blocks_to_swap:
self.offloader_double.wait_for_block(block_idx)
img, txt = block(*double_block_args)
if self.blocks_to_swap:
self.offloader_double.submit_move_blocks_forward(self.double_blocks, block_idx)
# Merge txt and img to pass through single stream blocks.
x = torch.cat((img, txt), 1)
if self.blocks_to_swap:
# delete img, txt to reduce memory usage
del img, txt
clean_memory_on_device(x.device)
if len(self.single_blocks) > 0:
for block_idx, block in enumerate(self.single_blocks):
single_block_args = [
x,
vec,
txt_seq_len,
attn_mask,
cu_seqlens_q,
cu_seqlens_kv,
max_seqlen_q,
max_seqlen_kv,
(freqs_cos, freqs_sin),
]
if self.blocks_to_swap:
self.offloader_single.wait_for_block(block_idx)
x = block(*single_block_args)
if self.blocks_to_swap:
self.offloader_single.submit_move_blocks_forward(self.single_blocks, block_idx)
img = x[:, :img_seq_len, ...]
x = None
# ---------------------------- Final layer ------------------------------
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
img = self.unpatchify(img, tt, th, tw)
if return_dict:
out["x"] = img
return out
return img
def unpatchify(self, x, t, h, w):
"""
x: (N, T, patch_size**2 * C)
imgs: (N, H, W, C)
"""
c = self.unpatchify_channels
pt, ph, pw = self.patch_size
assert t * h * w == x.shape[1]
x = x.reshape(shape=(x.shape[0], t, h, w, c, pt, ph, pw))
x = torch.einsum("nthwcopq->nctohpwq", x)
imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw))
return imgs
def params_count(self):
counts = {
"double": sum(
[
sum(p.numel() for p in block.img_attn_qkv.parameters())
+ sum(p.numel() for p in block.img_attn_proj.parameters())
+ sum(p.numel() for p in block.img_mlp.parameters())
+ sum(p.numel() for p in block.txt_attn_qkv.parameters())
+ sum(p.numel() for p in block.txt_attn_proj.parameters())
+ sum(p.numel() for p in block.txt_mlp.parameters())
for block in self.double_blocks
]
),
"single": sum(
[
sum(p.numel() for p in block.linear1.parameters()) + sum(p.numel() for p in block.linear2.parameters())
for block in self.single_blocks
]
),
"total": sum(p.numel() for p in self.parameters()),
}
counts["attn+mlp"] = counts["double"] + counts["single"]
return counts
#################################################################################
# HunyuanVideo Configs #
#################################################################################
HUNYUAN_VIDEO_CONFIG = {
"HYVideo-T/2": {
"mm_double_blocks_depth": 20,
"mm_single_blocks_depth": 40,
"rope_dim_list": [16, 56, 56],
"hidden_size": 3072,
"heads_num": 24,
"mlp_width_ratio": 4,
},
"HYVideo-T/2-cfgdistill": {
"mm_double_blocks_depth": 20,
"mm_single_blocks_depth": 40,
"rope_dim_list": [16, 56, 56],
"hidden_size": 3072,
"heads_num": 24,
"mlp_width_ratio": 4,
"guidance_embed": True,
},
}
def load_dit_model(text_states_dim, text_states_dim_2, in_channels, out_channels, factor_kwargs):
"""load hunyuan video model
NOTE: Only support HYVideo-T/2-cfgdistill now.
Args:
text_state_dim (int): text state dimension
text_state_dim_2 (int): text state dimension 2
in_channels (int): input channels number
out_channels (int): output channels number
factor_kwargs (dict): factor kwargs
Returns:
model (nn.Module): The hunyuan video model
"""
# if args.model in HUNYUAN_VIDEO_CONFIG.keys():
model = HYVideoDiffusionTransformer(
text_states_dim=text_states_dim,
text_states_dim_2=text_states_dim_2,
in_channels=in_channels,
out_channels=out_channels,
**HUNYUAN_VIDEO_CONFIG["HYVideo-T/2-cfgdistill"],
**factor_kwargs,
)
return model
# else:
# raise NotImplementedError()
def load_state_dict(model, model_path):
state_dict = torch.load(model_path, map_location=lambda storage, loc: storage, weights_only=True)
load_key = "module"
if load_key in state_dict:
state_dict = state_dict[load_key]
else:
raise KeyError(
f"Missing key: `{load_key}` in the checkpoint: {model_path}. The keys in the checkpoint "
f"are: {list(state_dict.keys())}."
)
model.load_state_dict(state_dict, strict=True, assign=True)
return model
def load_transformer(dit_path, attn_mode, device, dtype) -> HYVideoDiffusionTransformer:
# =========================== Build main model ===========================
factor_kwargs = {"device": device, "dtype": dtype, "attn_mode": attn_mode}
latent_channels = 16
in_channels = latent_channels
out_channels = latent_channels
with accelerate.init_empty_weights():
transformer = load_dit_model(
text_states_dim=4096,
text_states_dim_2=768,
in_channels=in_channels,
out_channels=out_channels,
factor_kwargs=factor_kwargs,
)
if os.path.splitext(dit_path)[-1] == ".safetensors":
# loading safetensors: may be already fp8
with MemoryEfficientSafeOpen(dit_path) as f:
state_dict = {}
for k in f.keys():
tensor = f.get_tensor(k)
tensor = tensor.to(device=device, dtype=dtype)
# TODO support comfy model
# if k.startswith("model.model."):
# k = convert_comfy_model_key(k)
state_dict[k] = tensor
transformer.load_state_dict(state_dict, strict=True, assign=True)
else:
transformer = load_state_dict(transformer, dit_path)
return transformer
def get_rotary_pos_embed_by_shape(model, latents_size):
target_ndim = 3
ndim = 5 - 2
if isinstance(model.patch_size, int):
assert all(s % model.patch_size == 0 for s in latents_size), (
f"Latent size(last {ndim} dimensions) should be divisible by patch size({model.patch_size}), "
f"but got {latents_size}."
)
rope_sizes = [s // model.patch_size for s in latents_size]
elif isinstance(model.patch_size, list):
assert all(s % model.patch_size[idx] == 0 for idx, s in enumerate(latents_size)), (
f"Latent size(last {ndim} dimensions) should be divisible by patch size({model.patch_size}), "
f"but got {latents_size}."
)
rope_sizes = [s // model.patch_size[idx] for idx, s in enumerate(latents_size)]
if len(rope_sizes) != target_ndim:
rope_sizes = [1] * (target_ndim - len(rope_sizes)) + rope_sizes # time axis
head_dim = model.hidden_size // model.heads_num
rope_dim_list = model.rope_dim_list
if rope_dim_list is None:
rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)]
assert sum(rope_dim_list) == head_dim, "sum(rope_dim_list) should equal to head_dim of attention layer"
rope_theta = 256
freqs_cos, freqs_sin = get_nd_rotary_pos_embed(
rope_dim_list, rope_sizes, theta=rope_theta, use_real=True, theta_rescale_factor=1
)
return freqs_cos, freqs_sin
def get_rotary_pos_embed(vae_name, model, video_length, height, width):
# 884
if "884" in vae_name:
latents_size = [(video_length - 1) // 4 + 1, height // 8, width // 8]
elif "888" in vae_name:
latents_size = [(video_length - 1) // 8 + 1, height // 8, width // 8]
else:
latents_size = [video_length, height // 8, width // 8]
return get_rotary_pos_embed_by_shape(model, latents_size)