|
import os |
|
from typing import Any, List, Tuple, Optional, Union, Dict |
|
import accelerate |
|
from einops import rearrange |
|
|
|
import torch |
|
import torch.nn as nn |
|
from torch.utils.checkpoint import checkpoint |
|
|
|
from .activation_layers import get_activation_layer |
|
from .norm_layers import get_norm_layer |
|
from .embed_layers import TimestepEmbedder, PatchEmbed, TextProjection |
|
from .attention import attention, parallel_attention, get_cu_seqlens |
|
from .posemb_layers import apply_rotary_emb |
|
from .mlp_layers import MLP, MLPEmbedder, FinalLayer |
|
from .modulate_layers import ModulateDiT, modulate, apply_gate |
|
from .token_refiner import SingleTokenRefiner |
|
from modules.custom_offloading_utils import ModelOffloader, synchronize_device, clean_memory_on_device |
|
from hunyuan_model.posemb_layers import get_nd_rotary_pos_embed |
|
|
|
from utils.safetensors_utils import MemoryEfficientSafeOpen |
|
|
|
|
|
class MMDoubleStreamBlock(nn.Module): |
|
""" |
|
A multimodal dit block with seperate modulation for |
|
text and image/video, see more details (SD3): https://arxiv.org/abs/2403.03206 |
|
(Flux.1): https://github.com/black-forest-labs/flux |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
heads_num: int, |
|
mlp_width_ratio: float, |
|
mlp_act_type: str = "gelu_tanh", |
|
qk_norm: bool = True, |
|
qk_norm_type: str = "rms", |
|
qkv_bias: bool = False, |
|
dtype: Optional[torch.dtype] = None, |
|
device: Optional[torch.device] = None, |
|
attn_mode: str = "flash", |
|
): |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
super().__init__() |
|
self.attn_mode = attn_mode |
|
|
|
self.deterministic = False |
|
self.heads_num = heads_num |
|
head_dim = hidden_size // heads_num |
|
mlp_hidden_dim = int(hidden_size * mlp_width_ratio) |
|
|
|
self.img_mod = ModulateDiT( |
|
hidden_size, |
|
factor=6, |
|
act_layer=get_activation_layer("silu"), |
|
**factory_kwargs, |
|
) |
|
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs) |
|
|
|
self.img_attn_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs) |
|
qk_norm_layer = get_norm_layer(qk_norm_type) |
|
self.img_attn_q_norm = ( |
|
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity() |
|
) |
|
self.img_attn_k_norm = ( |
|
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity() |
|
) |
|
self.img_attn_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs) |
|
|
|
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs) |
|
self.img_mlp = MLP( |
|
hidden_size, |
|
mlp_hidden_dim, |
|
act_layer=get_activation_layer(mlp_act_type), |
|
bias=True, |
|
**factory_kwargs, |
|
) |
|
|
|
self.txt_mod = ModulateDiT( |
|
hidden_size, |
|
factor=6, |
|
act_layer=get_activation_layer("silu"), |
|
**factory_kwargs, |
|
) |
|
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs) |
|
|
|
self.txt_attn_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs) |
|
self.txt_attn_q_norm = ( |
|
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity() |
|
) |
|
self.txt_attn_k_norm = ( |
|
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity() |
|
) |
|
self.txt_attn_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs) |
|
|
|
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs) |
|
self.txt_mlp = MLP( |
|
hidden_size, |
|
mlp_hidden_dim, |
|
act_layer=get_activation_layer(mlp_act_type), |
|
bias=True, |
|
**factory_kwargs, |
|
) |
|
self.hybrid_seq_parallel_attn = None |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def enable_deterministic(self): |
|
self.deterministic = True |
|
|
|
def disable_deterministic(self): |
|
self.deterministic = False |
|
|
|
def enable_gradient_checkpointing(self): |
|
self.gradient_checkpointing = True |
|
|
|
def _forward( |
|
self, |
|
img: torch.Tensor, |
|
txt: torch.Tensor, |
|
vec: torch.Tensor, |
|
attn_mask: Optional[torch.Tensor] = None, |
|
cu_seqlens_q: Optional[torch.Tensor] = None, |
|
cu_seqlens_kv: Optional[torch.Tensor] = None, |
|
max_seqlen_q: Optional[int] = None, |
|
max_seqlen_kv: Optional[int] = None, |
|
freqs_cis: tuple = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
(img_mod1_shift, img_mod1_scale, img_mod1_gate, img_mod2_shift, img_mod2_scale, img_mod2_gate) = self.img_mod(vec).chunk( |
|
6, dim=-1 |
|
) |
|
(txt_mod1_shift, txt_mod1_scale, txt_mod1_gate, txt_mod2_shift, txt_mod2_scale, txt_mod2_gate) = self.txt_mod(vec).chunk( |
|
6, dim=-1 |
|
) |
|
|
|
|
|
img_modulated = self.img_norm1(img) |
|
img_modulated = modulate(img_modulated, shift=img_mod1_shift, scale=img_mod1_scale) |
|
img_qkv = self.img_attn_qkv(img_modulated) |
|
img_modulated = None |
|
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num) |
|
img_qkv = None |
|
|
|
img_q = self.img_attn_q_norm(img_q).to(img_v) |
|
img_k = self.img_attn_k_norm(img_k).to(img_v) |
|
|
|
|
|
if freqs_cis is not None: |
|
img_q_shape = img_q.shape |
|
img_k_shape = img_k.shape |
|
img_q, img_k = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False) |
|
assert ( |
|
img_q.shape == img_q_shape and img_k.shape == img_k_shape |
|
), f"img_kk: {img_q.shape}, img_q: {img_q_shape}, img_kk: {img_k.shape}, img_k: {img_k_shape}" |
|
|
|
|
|
|
|
txt_modulated = self.txt_norm1(txt) |
|
txt_modulated = modulate(txt_modulated, shift=txt_mod1_shift, scale=txt_mod1_scale) |
|
txt_qkv = self.txt_attn_qkv(txt_modulated) |
|
txt_modulated = None |
|
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num) |
|
txt_qkv = None |
|
|
|
txt_q = self.txt_attn_q_norm(txt_q).to(txt_v) |
|
txt_k = self.txt_attn_k_norm(txt_k).to(txt_v) |
|
|
|
|
|
img_q_len = img_q.shape[1] |
|
img_kv_len = img_k.shape[1] |
|
batch_size = img_k.shape[0] |
|
q = torch.cat((img_q, txt_q), dim=1) |
|
img_q = txt_q = None |
|
k = torch.cat((img_k, txt_k), dim=1) |
|
img_k = txt_k = None |
|
v = torch.cat((img_v, txt_v), dim=1) |
|
img_v = txt_v = None |
|
|
|
assert ( |
|
cu_seqlens_q.shape[0] == 2 * img.shape[0] + 1 |
|
), f"cu_seqlens_q.shape:{cu_seqlens_q.shape}, img.shape[0]:{img.shape[0]}" |
|
|
|
|
|
if not self.hybrid_seq_parallel_attn: |
|
l = [q, k, v] |
|
q = k = v = None |
|
attn = attention( |
|
l, |
|
mode=self.attn_mode, |
|
attn_mask=attn_mask, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_kv=cu_seqlens_kv, |
|
max_seqlen_q=max_seqlen_q, |
|
max_seqlen_kv=max_seqlen_kv, |
|
batch_size=batch_size, |
|
) |
|
else: |
|
attn = parallel_attention( |
|
self.hybrid_seq_parallel_attn, |
|
q, |
|
k, |
|
v, |
|
img_q_len=img_q_len, |
|
img_kv_len=img_kv_len, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_kv=cu_seqlens_kv, |
|
) |
|
|
|
|
|
|
|
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1] :] |
|
attn = None |
|
|
|
|
|
img = img + apply_gate(self.img_attn_proj(img_attn), gate=img_mod1_gate) |
|
img_attn = None |
|
img = img + apply_gate( |
|
self.img_mlp(modulate(self.img_norm2(img), shift=img_mod2_shift, scale=img_mod2_scale)), |
|
gate=img_mod2_gate, |
|
) |
|
|
|
|
|
txt = txt + apply_gate(self.txt_attn_proj(txt_attn), gate=txt_mod1_gate) |
|
txt_attn = None |
|
txt = txt + apply_gate( |
|
self.txt_mlp(modulate(self.txt_norm2(txt), shift=txt_mod2_shift, scale=txt_mod2_scale)), |
|
gate=txt_mod2_gate, |
|
) |
|
|
|
return img, txt |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, *args, **kwargs): |
|
if self.training and self.gradient_checkpointing: |
|
return checkpoint(self._forward, *args, use_reentrant=False, **kwargs) |
|
else: |
|
return self._forward(*args, **kwargs) |
|
|
|
|
|
class MMSingleStreamBlock(nn.Module): |
|
""" |
|
A DiT block with parallel linear layers as described in |
|
https://arxiv.org/abs/2302.05442 and adapted modulation interface. |
|
Also refer to (SD3): https://arxiv.org/abs/2403.03206 |
|
(Flux.1): https://github.com/black-forest-labs/flux |
|
""" |
|
|
|
def __init__( |
|
self, |
|
hidden_size: int, |
|
heads_num: int, |
|
mlp_width_ratio: float = 4.0, |
|
mlp_act_type: str = "gelu_tanh", |
|
qk_norm: bool = True, |
|
qk_norm_type: str = "rms", |
|
qk_scale: float = None, |
|
dtype: Optional[torch.dtype] = None, |
|
device: Optional[torch.device] = None, |
|
attn_mode: str = "flash", |
|
): |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
super().__init__() |
|
self.attn_mode = attn_mode |
|
|
|
self.deterministic = False |
|
self.hidden_size = hidden_size |
|
self.heads_num = heads_num |
|
head_dim = hidden_size // heads_num |
|
mlp_hidden_dim = int(hidden_size * mlp_width_ratio) |
|
self.mlp_hidden_dim = mlp_hidden_dim |
|
self.scale = qk_scale or head_dim**-0.5 |
|
|
|
|
|
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + mlp_hidden_dim, **factory_kwargs) |
|
|
|
self.linear2 = nn.Linear(hidden_size + mlp_hidden_dim, hidden_size, **factory_kwargs) |
|
|
|
qk_norm_layer = get_norm_layer(qk_norm_type) |
|
self.q_norm = qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity() |
|
self.k_norm = qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs) if qk_norm else nn.Identity() |
|
|
|
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, **factory_kwargs) |
|
|
|
self.mlp_act = get_activation_layer(mlp_act_type)() |
|
self.modulation = ModulateDiT(hidden_size, factor=3, act_layer=get_activation_layer("silu"), **factory_kwargs) |
|
self.hybrid_seq_parallel_attn = None |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def enable_deterministic(self): |
|
self.deterministic = True |
|
|
|
def disable_deterministic(self): |
|
self.deterministic = False |
|
|
|
def enable_gradient_checkpointing(self): |
|
self.gradient_checkpointing = True |
|
|
|
def _forward( |
|
self, |
|
x: torch.Tensor, |
|
vec: torch.Tensor, |
|
txt_len: int, |
|
attn_mask: Optional[torch.Tensor] = None, |
|
cu_seqlens_q: Optional[torch.Tensor] = None, |
|
cu_seqlens_kv: Optional[torch.Tensor] = None, |
|
max_seqlen_q: Optional[int] = None, |
|
max_seqlen_kv: Optional[int] = None, |
|
freqs_cis: Tuple[torch.Tensor, torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
mod_shift, mod_scale, mod_gate = self.modulation(vec).chunk(3, dim=-1) |
|
x_mod = modulate(self.pre_norm(x), shift=mod_shift, scale=mod_scale) |
|
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) |
|
x_mod = None |
|
|
|
|
|
|
|
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.heads_num) |
|
qkv = None |
|
|
|
|
|
q = self.q_norm(q).to(v) |
|
k = self.k_norm(k).to(v) |
|
|
|
|
|
if freqs_cis is not None: |
|
img_q, txt_q = q[:, :-txt_len, :, :], q[:, -txt_len:, :, :] |
|
img_k, txt_k = k[:, :-txt_len, :, :], k[:, -txt_len:, :, :] |
|
q = k = None |
|
img_q_shape = img_q.shape |
|
img_k_shape = img_k.shape |
|
img_q, img_k = apply_rotary_emb(img_q, img_k, freqs_cis, head_first=False) |
|
assert ( |
|
img_q.shape == img_q_shape and img_k_shape == img_k.shape |
|
), f"img_kk: {img_q.shape}, img_q: {img_q.shape}, img_kk: {img_k.shape}, img_k: {img_k.shape}" |
|
|
|
|
|
q = torch.cat((img_q, txt_q), dim=1) |
|
k = torch.cat((img_k, txt_k), dim=1) |
|
del img_q, txt_q, img_k, txt_k |
|
|
|
|
|
assert cu_seqlens_q.shape[0] == 2 * x.shape[0] + 1, f"cu_seqlens_q.shape:{cu_seqlens_q.shape}, x.shape[0]:{x.shape[0]}" |
|
|
|
|
|
if not self.hybrid_seq_parallel_attn: |
|
l = [q, k, v] |
|
q = k = v = None |
|
attn = attention( |
|
l, |
|
mode=self.attn_mode, |
|
attn_mask=attn_mask, |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_kv=cu_seqlens_kv, |
|
max_seqlen_q=max_seqlen_q, |
|
max_seqlen_kv=max_seqlen_kv, |
|
batch_size=x.shape[0], |
|
) |
|
else: |
|
attn = parallel_attention( |
|
self.hybrid_seq_parallel_attn, |
|
q, |
|
k, |
|
v, |
|
img_q_len=img_q.shape[1], |
|
img_kv_len=img_k.shape[1], |
|
cu_seqlens_q=cu_seqlens_q, |
|
cu_seqlens_kv=cu_seqlens_kv, |
|
) |
|
|
|
|
|
|
|
|
|
mlp = self.mlp_act(mlp) |
|
attn_mlp = torch.cat((attn, mlp), 2) |
|
attn = None |
|
mlp = None |
|
output = self.linear2(attn_mlp) |
|
attn_mlp = None |
|
return x + apply_gate(output, gate=mod_gate) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def forward(self, *args, **kwargs): |
|
if self.training and self.gradient_checkpointing: |
|
return checkpoint(self._forward, *args, use_reentrant=False, **kwargs) |
|
else: |
|
return self._forward(*args, **kwargs) |
|
|
|
|
|
class HYVideoDiffusionTransformer(nn.Module): |
|
""" |
|
HunyuanVideo Transformer backbone |
|
|
|
Inherited from ModelMixin and ConfigMixin for compatibility with diffusers' sampler StableDiffusionPipeline. |
|
|
|
Reference: |
|
[1] Flux.1: https://github.com/black-forest-labs/flux |
|
[2] MMDiT: http://arxiv.org/abs/2403.03206 |
|
|
|
Parameters |
|
---------- |
|
args: argparse.Namespace |
|
The arguments parsed by argparse. |
|
patch_size: list |
|
The size of the patch. |
|
in_channels: int |
|
The number of input channels. |
|
out_channels: int |
|
The number of output channels. |
|
hidden_size: int |
|
The hidden size of the transformer backbone. |
|
heads_num: int |
|
The number of attention heads. |
|
mlp_width_ratio: float |
|
The ratio of the hidden size of the MLP in the transformer block. |
|
mlp_act_type: str |
|
The activation function of the MLP in the transformer block. |
|
depth_double_blocks: int |
|
The number of transformer blocks in the double blocks. |
|
depth_single_blocks: int |
|
The number of transformer blocks in the single blocks. |
|
rope_dim_list: list |
|
The dimension of the rotary embedding for t, h, w. |
|
qkv_bias: bool |
|
Whether to use bias in the qkv linear layer. |
|
qk_norm: bool |
|
Whether to use qk norm. |
|
qk_norm_type: str |
|
The type of qk norm. |
|
guidance_embed: bool |
|
Whether to use guidance embedding for distillation. |
|
text_projection: str |
|
The type of the text projection, default is single_refiner. |
|
use_attention_mask: bool |
|
Whether to use attention mask for text encoder. |
|
dtype: torch.dtype |
|
The dtype of the model. |
|
device: torch.device |
|
The device of the model. |
|
attn_mode: str |
|
The mode of the attention, default is flash. |
|
""" |
|
|
|
|
|
def __init__( |
|
self, |
|
text_states_dim: int, |
|
text_states_dim_2: int, |
|
patch_size: list = [1, 2, 2], |
|
in_channels: int = 4, |
|
out_channels: int = None, |
|
hidden_size: int = 3072, |
|
heads_num: int = 24, |
|
mlp_width_ratio: float = 4.0, |
|
mlp_act_type: str = "gelu_tanh", |
|
mm_double_blocks_depth: int = 20, |
|
mm_single_blocks_depth: int = 40, |
|
rope_dim_list: List[int] = [16, 56, 56], |
|
qkv_bias: bool = True, |
|
qk_norm: bool = True, |
|
qk_norm_type: str = "rms", |
|
guidance_embed: bool = False, |
|
text_projection: str = "single_refiner", |
|
use_attention_mask: bool = True, |
|
dtype: Optional[torch.dtype] = None, |
|
device: Optional[torch.device] = None, |
|
attn_mode: str = "flash", |
|
): |
|
factory_kwargs = {"device": device, "dtype": dtype} |
|
super().__init__() |
|
|
|
self.patch_size = patch_size |
|
self.in_channels = in_channels |
|
self.out_channels = in_channels if out_channels is None else out_channels |
|
self.unpatchify_channels = self.out_channels |
|
self.guidance_embed = guidance_embed |
|
self.rope_dim_list = rope_dim_list |
|
|
|
|
|
|
|
self.use_attention_mask = use_attention_mask |
|
self.text_projection = text_projection |
|
|
|
self.text_states_dim = text_states_dim |
|
self.text_states_dim_2 = text_states_dim_2 |
|
|
|
if hidden_size % heads_num != 0: |
|
raise ValueError(f"Hidden size {hidden_size} must be divisible by heads_num {heads_num}") |
|
pe_dim = hidden_size // heads_num |
|
if sum(rope_dim_list) != pe_dim: |
|
raise ValueError(f"Got {rope_dim_list} but expected positional dim {pe_dim}") |
|
self.hidden_size = hidden_size |
|
self.heads_num = heads_num |
|
|
|
self.attn_mode = attn_mode |
|
|
|
|
|
self.img_in = PatchEmbed(self.patch_size, self.in_channels, self.hidden_size, **factory_kwargs) |
|
|
|
|
|
if self.text_projection == "linear": |
|
self.txt_in = TextProjection( |
|
self.text_states_dim, |
|
self.hidden_size, |
|
get_activation_layer("silu"), |
|
**factory_kwargs, |
|
) |
|
elif self.text_projection == "single_refiner": |
|
self.txt_in = SingleTokenRefiner(self.text_states_dim, hidden_size, heads_num, depth=2, **factory_kwargs) |
|
else: |
|
raise NotImplementedError(f"Unsupported text_projection: {self.text_projection}") |
|
|
|
|
|
self.time_in = TimestepEmbedder(self.hidden_size, get_activation_layer("silu"), **factory_kwargs) |
|
|
|
|
|
self.vector_in = MLPEmbedder(self.text_states_dim_2, self.hidden_size, **factory_kwargs) |
|
|
|
|
|
self.guidance_in = ( |
|
TimestepEmbedder(self.hidden_size, get_activation_layer("silu"), **factory_kwargs) if guidance_embed else None |
|
) |
|
|
|
|
|
self.double_blocks = nn.ModuleList( |
|
[ |
|
MMDoubleStreamBlock( |
|
self.hidden_size, |
|
self.heads_num, |
|
mlp_width_ratio=mlp_width_ratio, |
|
mlp_act_type=mlp_act_type, |
|
qk_norm=qk_norm, |
|
qk_norm_type=qk_norm_type, |
|
qkv_bias=qkv_bias, |
|
attn_mode=attn_mode, |
|
**factory_kwargs, |
|
) |
|
for _ in range(mm_double_blocks_depth) |
|
] |
|
) |
|
|
|
|
|
self.single_blocks = nn.ModuleList( |
|
[ |
|
MMSingleStreamBlock( |
|
self.hidden_size, |
|
self.heads_num, |
|
mlp_width_ratio=mlp_width_ratio, |
|
mlp_act_type=mlp_act_type, |
|
qk_norm=qk_norm, |
|
qk_norm_type=qk_norm_type, |
|
attn_mode=attn_mode, |
|
**factory_kwargs, |
|
) |
|
for _ in range(mm_single_blocks_depth) |
|
] |
|
) |
|
|
|
self.final_layer = FinalLayer( |
|
self.hidden_size, |
|
self.patch_size, |
|
self.out_channels, |
|
get_activation_layer("silu"), |
|
**factory_kwargs, |
|
) |
|
|
|
self.gradient_checkpointing = False |
|
self.blocks_to_swap = None |
|
self.offloader_double = None |
|
self.offloader_single = None |
|
self._enable_img_in_txt_in_offloading = False |
|
|
|
@property |
|
def device(self): |
|
return next(self.parameters()).device |
|
|
|
@property |
|
def dtype(self): |
|
return next(self.parameters()).dtype |
|
|
|
def enable_gradient_checkpointing(self): |
|
self.gradient_checkpointing = True |
|
|
|
self.txt_in.enable_gradient_checkpointing() |
|
|
|
for block in self.double_blocks + self.single_blocks: |
|
block.enable_gradient_checkpointing() |
|
|
|
print(f"HYVideoDiffusionTransformer: Gradient checkpointing enabled.") |
|
|
|
def enable_img_in_txt_in_offloading(self): |
|
self._enable_img_in_txt_in_offloading = True |
|
|
|
def enable_block_swap(self, num_blocks: int, device: torch.device, supports_backward: bool): |
|
self.blocks_to_swap = num_blocks |
|
self.num_double_blocks = len(self.double_blocks) |
|
self.num_single_blocks = len(self.single_blocks) |
|
double_blocks_to_swap = num_blocks // 2 |
|
single_blocks_to_swap = (num_blocks - double_blocks_to_swap) * 2 + 1 |
|
|
|
assert double_blocks_to_swap <= self.num_double_blocks - 1 and single_blocks_to_swap <= self.num_single_blocks - 1, ( |
|
f"Cannot swap more than {self.num_double_blocks - 1} double blocks and {self.num_single_blocks - 1} single blocks. " |
|
f"Requested {double_blocks_to_swap} double blocks and {single_blocks_to_swap} single blocks." |
|
) |
|
|
|
self.offloader_double = ModelOffloader( |
|
"double", self.double_blocks, self.num_double_blocks, double_blocks_to_swap, supports_backward, device |
|
) |
|
self.offloader_single = ModelOffloader( |
|
"single", self.single_blocks, self.num_single_blocks, single_blocks_to_swap, supports_backward, device |
|
) |
|
print( |
|
f"HYVideoDiffusionTransformer: Block swap enabled. Swapping {num_blocks} blocks, double blocks: {double_blocks_to_swap}, single blocks: {single_blocks_to_swap}." |
|
) |
|
|
|
def move_to_device_except_swap_blocks(self, device: torch.device): |
|
|
|
if self.blocks_to_swap: |
|
save_double_blocks = self.double_blocks |
|
save_single_blocks = self.single_blocks |
|
self.double_blocks = None |
|
self.single_blocks = None |
|
|
|
self.to(device) |
|
|
|
if self.blocks_to_swap: |
|
self.double_blocks = save_double_blocks |
|
self.single_blocks = save_single_blocks |
|
|
|
def prepare_block_swap_before_forward(self): |
|
if self.blocks_to_swap is None or self.blocks_to_swap == 0: |
|
return |
|
self.offloader_double.prepare_block_devices_before_forward(self.double_blocks) |
|
self.offloader_single.prepare_block_devices_before_forward(self.single_blocks) |
|
|
|
def enable_deterministic(self): |
|
for block in self.double_blocks: |
|
block.enable_deterministic() |
|
for block in self.single_blocks: |
|
block.enable_deterministic() |
|
|
|
def disable_deterministic(self): |
|
for block in self.double_blocks: |
|
block.disable_deterministic() |
|
for block in self.single_blocks: |
|
block.disable_deterministic() |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
t: torch.Tensor, |
|
text_states: torch.Tensor = None, |
|
text_mask: torch.Tensor = None, |
|
text_states_2: Optional[torch.Tensor] = None, |
|
freqs_cos: Optional[torch.Tensor] = None, |
|
freqs_sin: Optional[torch.Tensor] = None, |
|
guidance: torch.Tensor = None, |
|
return_dict: bool = True, |
|
) -> Union[torch.Tensor, Dict[str, torch.Tensor]]: |
|
out = {} |
|
img = x |
|
txt = text_states |
|
_, _, ot, oh, ow = x.shape |
|
tt, th, tw = ( |
|
ot // self.patch_size[0], |
|
oh // self.patch_size[1], |
|
ow // self.patch_size[2], |
|
) |
|
|
|
|
|
vec = self.time_in(t) |
|
|
|
|
|
vec = vec + self.vector_in(text_states_2) |
|
|
|
|
|
if self.guidance_embed: |
|
if guidance is None: |
|
raise ValueError("Didn't get guidance strength for guidance distilled model.") |
|
|
|
|
|
vec = vec + self.guidance_in(guidance) |
|
|
|
|
|
if self._enable_img_in_txt_in_offloading: |
|
self.img_in.to(x.device, non_blocking=True) |
|
self.txt_in.to(x.device, non_blocking=True) |
|
synchronize_device(x.device) |
|
|
|
img = self.img_in(img) |
|
if self.text_projection == "linear": |
|
txt = self.txt_in(txt) |
|
elif self.text_projection == "single_refiner": |
|
txt = self.txt_in(txt, t, text_mask if self.use_attention_mask else None) |
|
else: |
|
raise NotImplementedError(f"Unsupported text_projection: {self.text_projection}") |
|
|
|
if self._enable_img_in_txt_in_offloading: |
|
self.img_in.to(torch.device("cpu"), non_blocking=True) |
|
self.txt_in.to(torch.device("cpu"), non_blocking=True) |
|
synchronize_device(x.device) |
|
clean_memory_on_device(x.device) |
|
|
|
txt_seq_len = txt.shape[1] |
|
img_seq_len = img.shape[1] |
|
|
|
|
|
cu_seqlens_q = get_cu_seqlens(text_mask, img_seq_len) |
|
cu_seqlens_kv = cu_seqlens_q |
|
max_seqlen_q = img_seq_len + txt_seq_len |
|
max_seqlen_kv = max_seqlen_q |
|
|
|
attn_mask = None |
|
if self.attn_mode == "torch": |
|
|
|
bs = img.shape[0] |
|
attn_mask = torch.zeros((bs, 1, max_seqlen_q, max_seqlen_q), dtype=torch.bool, device=text_mask.device) |
|
|
|
|
|
text_len = text_mask.sum(dim=1) |
|
total_len = img_seq_len + text_len |
|
|
|
|
|
for i in range(bs): |
|
attn_mask[i, :, : total_len[i], : total_len[i]] = True |
|
|
|
freqs_cis = (freqs_cos, freqs_sin) if freqs_cos is not None else None |
|
|
|
for block_idx, block in enumerate(self.double_blocks): |
|
double_block_args = [ |
|
img, |
|
txt, |
|
vec, |
|
attn_mask, |
|
cu_seqlens_q, |
|
cu_seqlens_kv, |
|
max_seqlen_q, |
|
max_seqlen_kv, |
|
freqs_cis, |
|
] |
|
|
|
if self.blocks_to_swap: |
|
self.offloader_double.wait_for_block(block_idx) |
|
|
|
img, txt = block(*double_block_args) |
|
|
|
if self.blocks_to_swap: |
|
self.offloader_double.submit_move_blocks_forward(self.double_blocks, block_idx) |
|
|
|
|
|
x = torch.cat((img, txt), 1) |
|
if self.blocks_to_swap: |
|
|
|
del img, txt |
|
clean_memory_on_device(x.device) |
|
|
|
if len(self.single_blocks) > 0: |
|
for block_idx, block in enumerate(self.single_blocks): |
|
single_block_args = [ |
|
x, |
|
vec, |
|
txt_seq_len, |
|
attn_mask, |
|
cu_seqlens_q, |
|
cu_seqlens_kv, |
|
max_seqlen_q, |
|
max_seqlen_kv, |
|
(freqs_cos, freqs_sin), |
|
] |
|
if self.blocks_to_swap: |
|
self.offloader_single.wait_for_block(block_idx) |
|
|
|
x = block(*single_block_args) |
|
|
|
if self.blocks_to_swap: |
|
self.offloader_single.submit_move_blocks_forward(self.single_blocks, block_idx) |
|
|
|
img = x[:, :img_seq_len, ...] |
|
x = None |
|
|
|
|
|
img = self.final_layer(img, vec) |
|
|
|
img = self.unpatchify(img, tt, th, tw) |
|
if return_dict: |
|
out["x"] = img |
|
return out |
|
return img |
|
|
|
def unpatchify(self, x, t, h, w): |
|
""" |
|
x: (N, T, patch_size**2 * C) |
|
imgs: (N, H, W, C) |
|
""" |
|
c = self.unpatchify_channels |
|
pt, ph, pw = self.patch_size |
|
assert t * h * w == x.shape[1] |
|
|
|
x = x.reshape(shape=(x.shape[0], t, h, w, c, pt, ph, pw)) |
|
x = torch.einsum("nthwcopq->nctohpwq", x) |
|
imgs = x.reshape(shape=(x.shape[0], c, t * pt, h * ph, w * pw)) |
|
|
|
return imgs |
|
|
|
def params_count(self): |
|
counts = { |
|
"double": sum( |
|
[ |
|
sum(p.numel() for p in block.img_attn_qkv.parameters()) |
|
+ sum(p.numel() for p in block.img_attn_proj.parameters()) |
|
+ sum(p.numel() for p in block.img_mlp.parameters()) |
|
+ sum(p.numel() for p in block.txt_attn_qkv.parameters()) |
|
+ sum(p.numel() for p in block.txt_attn_proj.parameters()) |
|
+ sum(p.numel() for p in block.txt_mlp.parameters()) |
|
for block in self.double_blocks |
|
] |
|
), |
|
"single": sum( |
|
[ |
|
sum(p.numel() for p in block.linear1.parameters()) + sum(p.numel() for p in block.linear2.parameters()) |
|
for block in self.single_blocks |
|
] |
|
), |
|
"total": sum(p.numel() for p in self.parameters()), |
|
} |
|
counts["attn+mlp"] = counts["double"] + counts["single"] |
|
return counts |
|
|
|
|
|
|
|
|
|
|
|
|
|
HUNYUAN_VIDEO_CONFIG = { |
|
"HYVideo-T/2": { |
|
"mm_double_blocks_depth": 20, |
|
"mm_single_blocks_depth": 40, |
|
"rope_dim_list": [16, 56, 56], |
|
"hidden_size": 3072, |
|
"heads_num": 24, |
|
"mlp_width_ratio": 4, |
|
}, |
|
"HYVideo-T/2-cfgdistill": { |
|
"mm_double_blocks_depth": 20, |
|
"mm_single_blocks_depth": 40, |
|
"rope_dim_list": [16, 56, 56], |
|
"hidden_size": 3072, |
|
"heads_num": 24, |
|
"mlp_width_ratio": 4, |
|
"guidance_embed": True, |
|
}, |
|
} |
|
|
|
|
|
def load_dit_model(text_states_dim, text_states_dim_2, in_channels, out_channels, factor_kwargs): |
|
"""load hunyuan video model |
|
|
|
NOTE: Only support HYVideo-T/2-cfgdistill now. |
|
|
|
Args: |
|
text_state_dim (int): text state dimension |
|
text_state_dim_2 (int): text state dimension 2 |
|
in_channels (int): input channels number |
|
out_channels (int): output channels number |
|
factor_kwargs (dict): factor kwargs |
|
|
|
Returns: |
|
model (nn.Module): The hunyuan video model |
|
""" |
|
|
|
model = HYVideoDiffusionTransformer( |
|
text_states_dim=text_states_dim, |
|
text_states_dim_2=text_states_dim_2, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
**HUNYUAN_VIDEO_CONFIG["HYVideo-T/2-cfgdistill"], |
|
**factor_kwargs, |
|
) |
|
return model |
|
|
|
|
|
|
|
|
|
def load_state_dict(model, model_path): |
|
state_dict = torch.load(model_path, map_location=lambda storage, loc: storage, weights_only=True) |
|
|
|
load_key = "module" |
|
if load_key in state_dict: |
|
state_dict = state_dict[load_key] |
|
else: |
|
raise KeyError( |
|
f"Missing key: `{load_key}` in the checkpoint: {model_path}. The keys in the checkpoint " |
|
f"are: {list(state_dict.keys())}." |
|
) |
|
model.load_state_dict(state_dict, strict=True, assign=True) |
|
return model |
|
|
|
|
|
def load_transformer(dit_path, attn_mode, device, dtype) -> HYVideoDiffusionTransformer: |
|
|
|
factor_kwargs = {"device": device, "dtype": dtype, "attn_mode": attn_mode} |
|
latent_channels = 16 |
|
in_channels = latent_channels |
|
out_channels = latent_channels |
|
|
|
with accelerate.init_empty_weights(): |
|
transformer = load_dit_model( |
|
text_states_dim=4096, |
|
text_states_dim_2=768, |
|
in_channels=in_channels, |
|
out_channels=out_channels, |
|
factor_kwargs=factor_kwargs, |
|
) |
|
|
|
if os.path.splitext(dit_path)[-1] == ".safetensors": |
|
|
|
with MemoryEfficientSafeOpen(dit_path) as f: |
|
state_dict = {} |
|
for k in f.keys(): |
|
tensor = f.get_tensor(k) |
|
tensor = tensor.to(device=device, dtype=dtype) |
|
|
|
|
|
|
|
state_dict[k] = tensor |
|
transformer.load_state_dict(state_dict, strict=True, assign=True) |
|
else: |
|
transformer = load_state_dict(transformer, dit_path) |
|
|
|
return transformer |
|
|
|
|
|
def get_rotary_pos_embed_by_shape(model, latents_size): |
|
target_ndim = 3 |
|
ndim = 5 - 2 |
|
|
|
if isinstance(model.patch_size, int): |
|
assert all(s % model.patch_size == 0 for s in latents_size), ( |
|
f"Latent size(last {ndim} dimensions) should be divisible by patch size({model.patch_size}), " |
|
f"but got {latents_size}." |
|
) |
|
rope_sizes = [s // model.patch_size for s in latents_size] |
|
elif isinstance(model.patch_size, list): |
|
assert all(s % model.patch_size[idx] == 0 for idx, s in enumerate(latents_size)), ( |
|
f"Latent size(last {ndim} dimensions) should be divisible by patch size({model.patch_size}), " |
|
f"but got {latents_size}." |
|
) |
|
rope_sizes = [s // model.patch_size[idx] for idx, s in enumerate(latents_size)] |
|
|
|
if len(rope_sizes) != target_ndim: |
|
rope_sizes = [1] * (target_ndim - len(rope_sizes)) + rope_sizes |
|
head_dim = model.hidden_size // model.heads_num |
|
rope_dim_list = model.rope_dim_list |
|
if rope_dim_list is None: |
|
rope_dim_list = [head_dim // target_ndim for _ in range(target_ndim)] |
|
assert sum(rope_dim_list) == head_dim, "sum(rope_dim_list) should equal to head_dim of attention layer" |
|
|
|
rope_theta = 256 |
|
freqs_cos, freqs_sin = get_nd_rotary_pos_embed( |
|
rope_dim_list, rope_sizes, theta=rope_theta, use_real=True, theta_rescale_factor=1 |
|
) |
|
return freqs_cos, freqs_sin |
|
|
|
|
|
def get_rotary_pos_embed(vae_name, model, video_length, height, width): |
|
|
|
if "884" in vae_name: |
|
latents_size = [(video_length - 1) // 4 + 1, height // 8, width // 8] |
|
elif "888" in vae_name: |
|
latents_size = [(video_length - 1) // 8 + 1, height // 8, width // 8] |
|
else: |
|
latents_size = [video_length, height // 8, width // 8] |
|
|
|
return get_rotary_pos_embed_by_shape(model, latents_size) |
|
|