|
from dataclasses import dataclass |
|
import json |
|
from typing import Optional, Tuple, Union |
|
from pathlib import Path |
|
|
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
|
|
from diffusers.utils import BaseOutput, is_torch_version |
|
from diffusers.utils.torch_utils import randn_tensor |
|
from diffusers.models.attention_processor import SpatialNorm |
|
from modules.unet_causal_3d_blocks import CausalConv3d, UNetMidBlockCausal3D, get_down_block3d, get_up_block3d |
|
|
|
import logging |
|
|
|
logger = logging.getLogger(__name__) |
|
logging.basicConfig(level=logging.INFO) |
|
|
|
|
|
SCALING_FACTOR = 0.476986 |
|
VAE_VER = "884-16c-hy" |
|
|
|
|
|
def load_vae( |
|
vae_type: str = "884-16c-hy", |
|
vae_dtype: Optional[Union[str, torch.dtype]] = None, |
|
sample_size: tuple = None, |
|
vae_path: str = None, |
|
device=None, |
|
): |
|
"""the fucntion to load the 3D VAE model |
|
|
|
Args: |
|
vae_type (str): the type of the 3D VAE model. Defaults to "884-16c-hy". |
|
vae_precision (str, optional): the precision to load vae. Defaults to None. |
|
sample_size (tuple, optional): the tiling size. Defaults to None. |
|
vae_path (str, optional): the path to vae. Defaults to None. |
|
logger (_type_, optional): logger. Defaults to None. |
|
device (_type_, optional): device to load vae. Defaults to None. |
|
""" |
|
if vae_path is None: |
|
vae_path = VAE_PATH[vae_type] |
|
|
|
logger.info(f"Loading 3D VAE model ({vae_type}) from: {vae_path}") |
|
|
|
|
|
CONFIG_JSON = """{ |
|
"_class_name": "AutoencoderKLCausal3D", |
|
"_diffusers_version": "0.4.2", |
|
"act_fn": "silu", |
|
"block_out_channels": [ |
|
128, |
|
256, |
|
512, |
|
512 |
|
], |
|
"down_block_types": [ |
|
"DownEncoderBlockCausal3D", |
|
"DownEncoderBlockCausal3D", |
|
"DownEncoderBlockCausal3D", |
|
"DownEncoderBlockCausal3D" |
|
], |
|
"in_channels": 3, |
|
"latent_channels": 16, |
|
"layers_per_block": 2, |
|
"norm_num_groups": 32, |
|
"out_channels": 3, |
|
"sample_size": 256, |
|
"sample_tsize": 64, |
|
"up_block_types": [ |
|
"UpDecoderBlockCausal3D", |
|
"UpDecoderBlockCausal3D", |
|
"UpDecoderBlockCausal3D", |
|
"UpDecoderBlockCausal3D" |
|
], |
|
"scaling_factor": 0.476986, |
|
"time_compression_ratio": 4, |
|
"mid_block_add_attention": true |
|
}""" |
|
|
|
|
|
config = json.loads(CONFIG_JSON) |
|
|
|
|
|
from .autoencoder_kl_causal_3d import AutoencoderKLCausal3D |
|
|
|
if sample_size: |
|
vae = AutoencoderKLCausal3D.from_config(config, sample_size=sample_size) |
|
else: |
|
vae = AutoencoderKLCausal3D.from_config(config) |
|
|
|
|
|
|
|
|
|
ckpt = torch.load(vae_path, map_location=vae.device, weights_only=True) |
|
if "state_dict" in ckpt: |
|
ckpt = ckpt["state_dict"] |
|
if any(k.startswith("vae.") for k in ckpt.keys()): |
|
ckpt = {k.replace("vae.", ""): v for k, v in ckpt.items() if k.startswith("vae.")} |
|
vae.load_state_dict(ckpt) |
|
|
|
spatial_compression_ratio = vae.config.spatial_compression_ratio |
|
time_compression_ratio = vae.config.time_compression_ratio |
|
|
|
if vae_dtype is not None: |
|
vae = vae.to(vae_dtype) |
|
|
|
vae.requires_grad_(False) |
|
|
|
logger.info(f"VAE to dtype: {vae.dtype}") |
|
|
|
if device is not None: |
|
vae = vae.to(device) |
|
|
|
vae.eval() |
|
|
|
return vae, vae_path, spatial_compression_ratio, time_compression_ratio |
|
|
|
|
|
@dataclass |
|
class DecoderOutput(BaseOutput): |
|
r""" |
|
Output of decoding method. |
|
|
|
Args: |
|
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): |
|
The decoded output sample from the last layer of the model. |
|
""" |
|
|
|
sample: torch.FloatTensor |
|
|
|
|
|
class EncoderCausal3D(nn.Module): |
|
r""" |
|
The `EncoderCausal3D` layer of a variational autoencoder that encodes its input into a latent representation. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
out_channels: int = 3, |
|
down_block_types: Tuple[str, ...] = ("DownEncoderBlockCausal3D",), |
|
block_out_channels: Tuple[int, ...] = (64,), |
|
layers_per_block: int = 2, |
|
norm_num_groups: int = 32, |
|
act_fn: str = "silu", |
|
double_z: bool = True, |
|
mid_block_add_attention=True, |
|
time_compression_ratio: int = 4, |
|
spatial_compression_ratio: int = 8, |
|
): |
|
super().__init__() |
|
self.layers_per_block = layers_per_block |
|
|
|
self.conv_in = CausalConv3d(in_channels, block_out_channels[0], kernel_size=3, stride=1) |
|
self.mid_block = None |
|
self.down_blocks = nn.ModuleList([]) |
|
|
|
|
|
output_channel = block_out_channels[0] |
|
for i, down_block_type in enumerate(down_block_types): |
|
input_channel = output_channel |
|
output_channel = block_out_channels[i] |
|
is_final_block = i == len(block_out_channels) - 1 |
|
num_spatial_downsample_layers = int(np.log2(spatial_compression_ratio)) |
|
num_time_downsample_layers = int(np.log2(time_compression_ratio)) |
|
|
|
if time_compression_ratio == 4: |
|
add_spatial_downsample = bool(i < num_spatial_downsample_layers) |
|
add_time_downsample = bool(i >= (len(block_out_channels) - 1 - num_time_downsample_layers) and not is_final_block) |
|
else: |
|
raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}.") |
|
|
|
downsample_stride_HW = (2, 2) if add_spatial_downsample else (1, 1) |
|
downsample_stride_T = (2,) if add_time_downsample else (1,) |
|
downsample_stride = tuple(downsample_stride_T + downsample_stride_HW) |
|
down_block = get_down_block3d( |
|
down_block_type, |
|
num_layers=self.layers_per_block, |
|
in_channels=input_channel, |
|
out_channels=output_channel, |
|
add_downsample=bool(add_spatial_downsample or add_time_downsample), |
|
downsample_stride=downsample_stride, |
|
resnet_eps=1e-6, |
|
downsample_padding=0, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
attention_head_dim=output_channel, |
|
temb_channels=None, |
|
) |
|
self.down_blocks.append(down_block) |
|
|
|
|
|
self.mid_block = UNetMidBlockCausal3D( |
|
in_channels=block_out_channels[-1], |
|
resnet_eps=1e-6, |
|
resnet_act_fn=act_fn, |
|
output_scale_factor=1, |
|
resnet_time_scale_shift="default", |
|
attention_head_dim=block_out_channels[-1], |
|
resnet_groups=norm_num_groups, |
|
temb_channels=None, |
|
add_attention=mid_block_add_attention, |
|
) |
|
|
|
|
|
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6) |
|
self.conv_act = nn.SiLU() |
|
|
|
conv_out_channels = 2 * out_channels if double_z else out_channels |
|
self.conv_out = CausalConv3d(block_out_channels[-1], conv_out_channels, kernel_size=3) |
|
|
|
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor: |
|
r"""The forward method of the `EncoderCausal3D` class.""" |
|
assert len(sample.shape) == 5, "The input tensor should have 5 dimensions" |
|
|
|
sample = self.conv_in(sample) |
|
|
|
|
|
for down_block in self.down_blocks: |
|
sample = down_block(sample) |
|
|
|
|
|
sample = self.mid_block(sample) |
|
|
|
|
|
sample = self.conv_norm_out(sample) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
return sample |
|
|
|
|
|
class DecoderCausal3D(nn.Module): |
|
r""" |
|
The `DecoderCausal3D` layer of a variational autoencoder that decodes its latent representation into an output sample. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
out_channels: int = 3, |
|
up_block_types: Tuple[str, ...] = ("UpDecoderBlockCausal3D",), |
|
block_out_channels: Tuple[int, ...] = (64,), |
|
layers_per_block: int = 2, |
|
norm_num_groups: int = 32, |
|
act_fn: str = "silu", |
|
norm_type: str = "group", |
|
mid_block_add_attention=True, |
|
time_compression_ratio: int = 4, |
|
spatial_compression_ratio: int = 8, |
|
): |
|
super().__init__() |
|
self.layers_per_block = layers_per_block |
|
|
|
self.conv_in = CausalConv3d(in_channels, block_out_channels[-1], kernel_size=3, stride=1) |
|
self.mid_block = None |
|
self.up_blocks = nn.ModuleList([]) |
|
|
|
temb_channels = in_channels if norm_type == "spatial" else None |
|
|
|
|
|
self.mid_block = UNetMidBlockCausal3D( |
|
in_channels=block_out_channels[-1], |
|
resnet_eps=1e-6, |
|
resnet_act_fn=act_fn, |
|
output_scale_factor=1, |
|
resnet_time_scale_shift="default" if norm_type == "group" else norm_type, |
|
attention_head_dim=block_out_channels[-1], |
|
resnet_groups=norm_num_groups, |
|
temb_channels=temb_channels, |
|
add_attention=mid_block_add_attention, |
|
) |
|
|
|
|
|
reversed_block_out_channels = list(reversed(block_out_channels)) |
|
output_channel = reversed_block_out_channels[0] |
|
for i, up_block_type in enumerate(up_block_types): |
|
prev_output_channel = output_channel |
|
output_channel = reversed_block_out_channels[i] |
|
is_final_block = i == len(block_out_channels) - 1 |
|
num_spatial_upsample_layers = int(np.log2(spatial_compression_ratio)) |
|
num_time_upsample_layers = int(np.log2(time_compression_ratio)) |
|
|
|
if time_compression_ratio == 4: |
|
add_spatial_upsample = bool(i < num_spatial_upsample_layers) |
|
add_time_upsample = bool(i >= len(block_out_channels) - 1 - num_time_upsample_layers and not is_final_block) |
|
else: |
|
raise ValueError(f"Unsupported time_compression_ratio: {time_compression_ratio}.") |
|
|
|
upsample_scale_factor_HW = (2, 2) if add_spatial_upsample else (1, 1) |
|
upsample_scale_factor_T = (2,) if add_time_upsample else (1,) |
|
upsample_scale_factor = tuple(upsample_scale_factor_T + upsample_scale_factor_HW) |
|
up_block = get_up_block3d( |
|
up_block_type, |
|
num_layers=self.layers_per_block + 1, |
|
in_channels=prev_output_channel, |
|
out_channels=output_channel, |
|
prev_output_channel=None, |
|
add_upsample=bool(add_spatial_upsample or add_time_upsample), |
|
upsample_scale_factor=upsample_scale_factor, |
|
resnet_eps=1e-6, |
|
resnet_act_fn=act_fn, |
|
resnet_groups=norm_num_groups, |
|
attention_head_dim=output_channel, |
|
temb_channels=temb_channels, |
|
resnet_time_scale_shift=norm_type, |
|
) |
|
self.up_blocks.append(up_block) |
|
prev_output_channel = output_channel |
|
|
|
|
|
if norm_type == "spatial": |
|
self.conv_norm_out = SpatialNorm(block_out_channels[0], temb_channels) |
|
else: |
|
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) |
|
self.conv_act = nn.SiLU() |
|
self.conv_out = CausalConv3d(block_out_channels[0], out_channels, kernel_size=3) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
def forward( |
|
self, |
|
sample: torch.FloatTensor, |
|
latent_embeds: Optional[torch.FloatTensor] = None, |
|
) -> torch.FloatTensor: |
|
r"""The forward method of the `DecoderCausal3D` class.""" |
|
assert len(sample.shape) == 5, "The input tensor should have 5 dimensions." |
|
|
|
sample = self.conv_in(sample) |
|
|
|
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype |
|
if self.training and self.gradient_checkpointing: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
return module(*inputs) |
|
|
|
return custom_forward |
|
|
|
if is_torch_version(">=", "1.11.0"): |
|
|
|
sample = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(self.mid_block), |
|
sample, |
|
latent_embeds, |
|
use_reentrant=False, |
|
) |
|
sample = sample.to(upscale_dtype) |
|
|
|
|
|
for up_block in self.up_blocks: |
|
sample = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(up_block), |
|
sample, |
|
latent_embeds, |
|
use_reentrant=False, |
|
) |
|
else: |
|
|
|
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample, latent_embeds) |
|
sample = sample.to(upscale_dtype) |
|
|
|
|
|
for up_block in self.up_blocks: |
|
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, latent_embeds) |
|
else: |
|
|
|
sample = self.mid_block(sample, latent_embeds) |
|
sample = sample.to(upscale_dtype) |
|
|
|
|
|
for up_block in self.up_blocks: |
|
sample = up_block(sample, latent_embeds) |
|
|
|
|
|
if latent_embeds is None: |
|
sample = self.conv_norm_out(sample) |
|
else: |
|
sample = self.conv_norm_out(sample, latent_embeds) |
|
sample = self.conv_act(sample) |
|
sample = self.conv_out(sample) |
|
|
|
return sample |
|
|
|
|
|
class DiagonalGaussianDistribution(object): |
|
def __init__(self, parameters: torch.Tensor, deterministic: bool = False): |
|
if parameters.ndim == 3: |
|
dim = 2 |
|
elif parameters.ndim == 5 or parameters.ndim == 4: |
|
dim = 1 |
|
else: |
|
raise NotImplementedError |
|
self.parameters = parameters |
|
self.mean, self.logvar = torch.chunk(parameters, 2, dim=dim) |
|
self.logvar = torch.clamp(self.logvar, -30.0, 20.0) |
|
self.deterministic = deterministic |
|
self.std = torch.exp(0.5 * self.logvar) |
|
self.var = torch.exp(self.logvar) |
|
if self.deterministic: |
|
self.var = self.std = torch.zeros_like(self.mean, device=self.parameters.device, dtype=self.parameters.dtype) |
|
|
|
def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor: |
|
|
|
sample = randn_tensor( |
|
self.mean.shape, |
|
generator=generator, |
|
device=self.parameters.device, |
|
dtype=self.parameters.dtype, |
|
) |
|
x = self.mean + self.std * sample |
|
return x |
|
|
|
def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor: |
|
if self.deterministic: |
|
return torch.Tensor([0.0]) |
|
else: |
|
reduce_dim = list(range(1, self.mean.ndim)) |
|
if other is None: |
|
return 0.5 * torch.sum( |
|
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, |
|
dim=reduce_dim, |
|
) |
|
else: |
|
return 0.5 * torch.sum( |
|
torch.pow(self.mean - other.mean, 2) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar, |
|
dim=reduce_dim, |
|
) |
|
|
|
def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor: |
|
if self.deterministic: |
|
return torch.Tensor([0.0]) |
|
logtwopi = np.log(2.0 * np.pi) |
|
return 0.5 * torch.sum( |
|
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, |
|
dim=dims, |
|
) |
|
|
|
def mode(self) -> torch.Tensor: |
|
return self.mean |
|
|