m-elio commited on
Commit
b745e61
·
1 Parent(s): d25ce79

model card update

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md CHANGED
@@ -1,3 +1,92 @@
1
  ---
2
  license: llama2
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: llama2
3
+ language:
4
+ - it
5
+ tags:
6
+ - text-generation-inference
7
  ---
8
+ # Model Card for LLaMAntino-2-7b-evalita
9
+
10
+ ## Model description
11
+
12
+ <!-- Provide a quick summary of what the model is/does. -->
13
+
14
+ **LLaMAntino-2-7b-evalita** is a *Large Language Model (LLM)* that is an instruction-tuned version of **LLaMAntino-2-7b** (an italian-adapted **LLaMA 2**).
15
+ This model aims to provide Italian NLP researchers with a tool to tackle tasks such as *sentiment analysis* and *text categorization*.
16
+
17
+ The model was trained following the methodology used for [Alpaca](https://github.com/tatsu-lab/stanford_alpaca) and using as training data [EVALITA 2023 tasks](https://www.evalita.it/campaigns/evalita-2023/tasks/) formatted in an instruction-following style.
18
+ If you are interested in more details regarding the training procedure, you can find the code we used at the following link:
19
+ - **Repository:** https://github.com/swapUniba/LLaMAntino
20
+
21
+ **NOTICE**: the code has not been released yet, we apologize for the delay, it will be available asap!
22
+
23
+ - **Developed by:** Pierpaolo Basile, Elio Musacchio, Marco Polignano, Lucia Siciliani, Giuseppe Fiameni, Giovanni Semeraro
24
+ - **Funded by:** PNRR project FAIR - Future AI Research
25
+ - **Compute infrastructure:** [Leonardo](https://www.hpc.cineca.it/systems/hardware/leonardo/) supercomputer
26
+ - **Model type:** Large Language Model (LLM)
27
+ - **Language(s) (NLP):** Italian
28
+ - **License:** Llama 2 Community License
29
+ - **Finetuned from model:** [swap-uniba/LLaMAntino-2-7b-hf-ITA](https://huggingface.co/swap-uniba/LLaMAntino-2-7b-hf-ITA)
30
+
31
+ ## Prompt Format
32
+
33
+ This prompt format based on the Alpaca model was used for fine-tuning:
34
+
35
+ ```python
36
+ "Di seguito è riportata un'istruzione che descrive un'attività, abbinata ad un input che fornisce ulteriore informazione. " \
37
+ "Scrivi una risposta che soddisfi adeguatamente la richiesta.\n\n" \
38
+ f"### Istruzione:\n{instruction}\n\n### Input:\n{input}\n\n### Risposta:\n{response}"
39
+ ```
40
+
41
+ We recommend using this same prompt in inference to obtain the best results!
42
+
43
+ ## How to Get Started with the Model
44
+
45
+ Below you can find an example of model usage:
46
+
47
+ ```python
48
+ from transformers import AutoModelForCausalLM, AutoTokenizer
49
+
50
+ model_id = "swap-uniba/LLaMAntino-2-7b-hf-evalita-ITA"
51
+
52
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
53
+ model = AutoModelForCausalLM.from_pretrained(model_id)
54
+
55
+ instruction_text = "Categorizza le emozioni espresse nel testo fornito in input o determina l'assenza di emozioni. " \
56
+ "Puoi classificare il testo come neutrale o identificare una o più delle seguenti emozioni: " \
57
+ "rabbia, anticipazione, disgusto, paura, gioia, tristezza, sorpresa, fiducia, amore."
58
+ input_text = "Non me lo aspettavo proprio, ma oggi è stata una bellissima giornata, sono contentissimo!"
59
+
60
+ prompt = "Di seguito è riportata un'istruzione che descrive un'attività, accompagnata da un input che aggiunge ulteriore informazione. " \
61
+ f"Scrivi una risposta che completi adeguatamente la richiesta.\n\n" \
62
+ f"### Istruzione:\n{instruction_text}\n\n" \
63
+ f"### Input:\n{input_text}\n\n" \
64
+ f"### Risposta:\n"
65
+
66
+ input_ids = tokenizer(prompt, return_tensors="pt").input_ids
67
+ outputs = model.generate(input_ids=input_ids)
68
+
69
+ print(tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):])
70
+ ```
71
+
72
+ If you are facing issues when loading the model, you can try to load it quantized:
73
+
74
+ ```python
75
+ model = AutoModelForCausalLM.from_pretrained(model_id, token=token, load_in_8bit=True)
76
+ ```
77
+
78
+ *Note*: The model loading strategy above requires the [*bitsandbytes*](https://pypi.org/project/bitsandbytes/) and [*accelerate*](https://pypi.org/project/accelerate/) libraries
79
+
80
+ ## Evaluation
81
+
82
+ <!-- This section describes the evaluation protocols and provides the results. -->
83
+
84
+ *Coming soon*!
85
+
86
+ ## Citation
87
+
88
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
89
+
90
+ If you use this model in your research, please cite the following:
91
+
92
+ *Coming soon*!