File size: 6,698 Bytes
4f3b260 d09e211 4f3b260 d09e211 4f3b260 d09e211 4f3b260 d09e211 4f3b260 d09e211 4f3b260 d09e211 4f3b260 d09e211 4f3b260 d09e211 4f3b260 d09e211 4f3b260 d09e211 4f3b260 d09e211 4f3b260 d09e211 4f3b260 d09e211 4f3b260 d09e211 4f3b260 d09e211 4f3b260 d09e211 4f3b260 d09e211 4f3b260 d09e211 4f3b260 d09e211 4f3b260 d09e211 4f3b260 d09e211 4f3b260 d09e211 4f3b260 d09e211 4f3b260 d09e211 4f3b260 d09e211 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 |
import lightning.pytorch as pl
from transformers import (
AdamW,
AutoModel,
AutoConfig,
get_linear_schedule_with_warmup,
)
from transformers.models.bert.modeling_bert import BertLMPredictionHead
import torch
from torch import nn
from loss import CL_loss
import pandas as pd
class CL_model(pl.LightningModule):
def __init__(
self, n_batches=None, n_epochs=None, lr=None, mlm_weight=None, **kwargs
):
super().__init__()
## Params
self.n_batches = n_batches
self.n_epochs = n_epochs
self.lr = lr
self.mlm_weight = mlm_weight
# self.first_neg_idx = 0
self.config = AutoConfig.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
## Encoder
self.bert = AutoModel.from_pretrained(
"emilyalsentzer/Bio_ClinicalBERT", return_dict=True
)
# Unfreeze layers
self.bert_layer_num = sum(1 for _ in self.bert.named_parameters())
self.num_unfreeze_layer = self.bert_layer_num
self.ratio_unfreeze_layer = 0.0
if kwargs:
for key, value in kwargs.items():
if key == "unfreeze" and isinstance(value, float):
assert (
value >= 0.0 and value <= 1.0
), "ValueError: value must be a ratio between 0.0 and 1.0"
self.ratio_unfreeze_layer = value
if self.ratio_unfreeze_layer > 0.0:
self.num_unfreeze_layer = int(
self.bert_layer_num * self.ratio_unfreeze_layer
)
for param in list(self.bert.parameters())[: -self.num_unfreeze_layer]:
param.requires_grad = False
self.lm_head = BertLMPredictionHead(self.config)
self.projector = nn.Linear(self.bert.config.hidden_size, 128)
print("Model Initialized!")
## Losses
self.cl_loss = CL_loss()
self.mlm_loss = nn.CrossEntropyLoss()
## Logs
self.train_loss, self.val_loss = [], []
self.train_cl_loss, self.val_cl_loss = [], []
self.train_mlm_loss, self.val_mlm_loss = [], []
self.training_step_outputs, self.validation_step_outputs = [], []
def forward(self, input_ids, attention_mask, mlm_ids, eval=False):
# Contrastive
unmasked = self.bert(input_ids=input_ids, attention_mask=attention_mask)
cls = unmasked.pooler_output
if eval is True:
return cls
output = self.projector(cls)
# MLM
masked = self.bert(input_ids=mlm_ids, attention_mask=attention_mask)
pred = self.lm_head(masked.last_hidden_state)
pred = pred.view(-1, self.config.vocab_size)
return cls, output, pred
def training_step(self, batch, batch_idx):
tags = batch["tags"]
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
mlm_ids = batch["mlm_ids"]
mlm_labels = batch["mlm_labels"].reshape(-1)
cls, output, pred = self(input_ids, attention_mask, mlm_ids)
loss_cl = self.cl_loss(output, tags)
loss_mlm = self.mlm_loss(pred, mlm_labels)
loss = loss_cl + self.mlm_weight * loss_mlm
logs = {"loss": loss, "loss_cl": loss_cl, "loss_mlm": loss_mlm}
self.training_step_outputs.append(logs)
self.log("train_loss", loss, prog_bar=True, logger=True, sync_dist=True)
return loss
def on_train_epoch_end(self):
avg_loss = (
torch.stack([x["loss"] for x in self.training_step_outputs])
.mean()
.detach()
.cpu()
.numpy()
)
self.train_loss.append(avg_loss)
avg_cl_loss = (
torch.stack([x["loss_cl"] for x in self.training_step_outputs])
.mean()
.detach()
.cpu()
.numpy()
)
self.train_cl_loss.append(avg_cl_loss)
avg_mlm_loss = (
torch.stack([x["loss_mlm"] for x in self.training_step_outputs])
.mean()
.detach()
.cpu()
.numpy()
)
self.train_mlm_loss.append(avg_mlm_loss)
print(
"train_epoch:",
self.current_epoch,
"avg_loss:",
avg_loss,
"avg_cl_loss:",
avg_cl_loss,
"avg_mlm_loss:",
avg_mlm_loss,
)
self.training_step_outputs.clear()
def validation_step(self, batch, batch_idx):
tags = batch["tags"]
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
mlm_ids = batch["mlm_ids"]
mlm_labels = batch["mlm_labels"].reshape(-1)
cls, output, pred = self(input_ids, attention_mask, mlm_ids)
loss_cl = self.cl_loss(output, tags)
loss_mlm = self.mlm_loss(pred, mlm_labels)
loss = loss_cl + self.mlm_weight * loss_mlm
logs = {"loss": loss, "loss_cl": loss_cl, "loss_mlm": loss_mlm}
self.validation_step_outputs.append(logs)
self.log("validation_loss", loss, prog_bar=True, logger=True, sync_dist=True)
return loss
def on_validation_epoch_end(self):
avg_loss = (
torch.stack([x["loss"] for x in self.validation_step_outputs])
.mean()
.detach()
.cpu()
.numpy()
)
self.val_loss.append(avg_loss)
avg_cl_loss = (
torch.stack([x["loss_cl"] for x in self.validation_step_outputs])
.mean()
.detach()
.cpu()
.numpy()
)
self.val_cl_loss.append(avg_cl_loss)
avg_mlm_loss = (
torch.stack([x["loss_mlm"] for x in self.validation_step_outputs])
.mean()
.detach()
.cpu()
.numpy()
)
self.val_mlm_loss.append(avg_mlm_loss)
print(
"val_epoch:",
self.current_epoch,
"avg_loss:",
avg_loss,
"avg_cl_loss:",
avg_cl_loss,
"avg_mlm_loss:",
avg_mlm_loss,
)
self.validation_step_outputs.clear()
def configure_optimizers(self):
# Optimizer
self.trainable_params = [
param for param in self.parameters() if param.requires_grad
]
optimizer = AdamW(self.trainable_params, lr=self.lr)
# Scheduler
warmup_steps = self.n_batches // 3
total_steps = self.n_batches * self.n_epochs - warmup_steps
scheduler = get_linear_schedule_with_warmup(
optimizer, warmup_steps, total_steps
)
return [optimizer], [scheduler]
|