CHOPT / model.py
sxtforreal's picture
Create model.py
4f3b260 verified
raw
history blame
17.1 kB
import lightning.pytorch as pl
from transformers import (
AdamW,
AutoModel,
get_linear_schedule_with_warmup,
)
import torch
from torch import nn
from loss import (
ContrastiveLoss_simcse,
ContrastiveLoss_simcse_w,
ContrastiveLoss_samp,
ContrastiveLoss_samp_w,
)
class BERTContrastiveLearning_simcse(pl.LightningModule):
def __init__(self, n_batches=None, n_epochs=None, lr=None, **kwargs):
super().__init__()
### Parameters
self.n_batches = n_batches
self.n_epochs = n_epochs
self.lr = lr
### Architecture
self.bert = AutoModel.from_pretrained(
"emilyalsentzer/Bio_ClinicalBERT", return_dict=True
)
# Unfreeze encoder
self.bert_layer_num = sum(1 for _ in self.bert.named_parameters())
self.num_unfreeze_layer = self.bert_layer_num
self.ratio_unfreeze_layer = 0.0
if kwargs:
for key, value in kwargs.items():
if key == "unfreeze" and isinstance(value, float):
assert (
value >= 0.0 and value <= 1.0
), "ValueError: value must be a ratio between 0.0 and 1.0"
self.ratio_unfreeze_layer = value
if self.ratio_unfreeze_layer > 0.0:
self.num_unfreeze_layer = int(
self.bert_layer_num * self.ratio_unfreeze_layer
)
for param in list(self.bert.parameters())[: -self.num_unfreeze_layer]:
param.requires_grad = False
# Random dropouts
self.dropout1 = nn.Dropout(p=0.1)
self.dropout2 = nn.Dropout(p=0.1)
# Linear projector
self.projector = nn.Linear(self.bert.config.hidden_size, 128)
print("Model Initialized!")
### Loss
self.criterion = ContrastiveLoss_simcse()
### Logs
self.train_loss, self.val_loss, self.test_loss = [], [], []
self.training_step_outputs = []
self.validation_step_outputs = []
def configure_optimizers(self):
# Optimizer
self.trainable_params = [
param for param in self.parameters() if param.requires_grad
]
optimizer = AdamW(self.trainable_params, lr=self.lr)
# Scheduler
# warmup_steps = self.n_batches // 3
# total_steps = self.n_batches * self.n_epochs - warmup_steps
# scheduler = get_linear_schedule_with_warmup(
# optimizer, warmup_steps, total_steps
# )
return [optimizer]
def forward(self, input_ids, attention_mask):
emb = self.bert(input_ids=input_ids, attention_mask=attention_mask)
cls = emb.pooler_output
out = self.projector(cls)
anchor_out = self.dropout1(out[0:1])
rest_out = self.dropout2(out[1:])
output = torch.cat([anchor_out, rest_out])
return cls, output
def training_step(self, batch, batch_idx):
label = batch["label"]
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
cls, out = self(
input_ids,
attention_mask,
)
loss = self.criterion(out, label)
logs = {"loss": loss}
self.training_step_outputs.append(logs)
self.log("train_loss", loss, prog_bar=True, logger=True, sync_dist=True)
return loss
def on_train_epoch_end(self):
loss = (
torch.stack([x["loss"] for x in self.training_step_outputs])
.mean()
.detach()
.cpu()
.numpy()
)
self.train_loss.append(loss)
print("train_epoch:", self.current_epoch, "avg_loss:", loss)
self.training_step_outputs.clear()
def validation_step(self, batch, batch_idx):
label = batch["label"]
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
cls, out = self(
input_ids,
attention_mask,
)
loss = self.criterion(out, label)
logs = {"loss": loss}
self.validation_step_outputs.append(logs)
self.log("validation_loss", loss, prog_bar=True, logger=True, sync_dist=True)
return loss
def on_validation_epoch_end(self):
loss = (
torch.stack([x["loss"] for x in self.validation_step_outputs])
.mean()
.detach()
.cpu()
.numpy()
)
self.val_loss.append(loss)
print("val_epoch:", self.current_epoch, "avg_loss:", loss)
self.validation_step_outputs.clear()
class BERTContrastiveLearning_simcse_w(pl.LightningModule):
def __init__(self, n_batches=None, n_epochs=None, lr=None, **kwargs):
super().__init__()
### Parameters
self.n_batches = n_batches
self.n_epochs = n_epochs
self.lr = lr
### Architecture
self.bert = AutoModel.from_pretrained(
"emilyalsentzer/Bio_ClinicalBERT", return_dict=True
)
# Unfreeze encoder
self.bert_layer_num = sum(1 for _ in self.bert.named_parameters())
self.num_unfreeze_layer = self.bert_layer_num
self.ratio_unfreeze_layer = 0.0
if kwargs:
for key, value in kwargs.items():
if key == "unfreeze" and isinstance(value, float):
assert (
value >= 0.0 and value <= 1.0
), "ValueError: value must be a ratio between 0.0 and 1.0"
self.ratio_unfreeze_layer = value
if self.ratio_unfreeze_layer > 0.0:
self.num_unfreeze_layer = int(
self.bert_layer_num * self.ratio_unfreeze_layer
)
for param in list(self.bert.parameters())[: -self.num_unfreeze_layer]:
param.requires_grad = False
# Random dropouts
self.dropout1 = nn.Dropout(p=0.1)
self.dropout2 = nn.Dropout(p=0.1)
# Linear projector
self.projector = nn.Linear(self.bert.config.hidden_size, 128)
print("Model Initialized!")
### Loss
self.criterion = ContrastiveLoss_simcse_w()
### Logs
self.train_loss, self.val_loss, self.test_loss = [], [], []
self.training_step_outputs = []
self.validation_step_outputs = []
def configure_optimizers(self):
# Optimizer
self.trainable_params = [
param for param in self.parameters() if param.requires_grad
]
optimizer = AdamW(self.trainable_params, lr=self.lr)
# Scheduler
# warmup_steps = self.n_batches // 3
# total_steps = self.n_batches * self.n_epochs - warmup_steps
# scheduler = get_linear_schedule_with_warmup(
# optimizer, warmup_steps, total_steps
# )
return [optimizer]
def forward(self, input_ids, attention_mask):
emb = self.bert(input_ids=input_ids, attention_mask=attention_mask)
cls = emb.pooler_output
out = self.projector(cls)
anchor_out = self.dropout1(out[0:1])
rest_out = self.dropout2(out[1:])
output = torch.cat([anchor_out, rest_out])
return cls, output
def training_step(self, batch, batch_idx):
label = batch["label"]
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
score = batch["score"]
cls, out = self(
input_ids,
attention_mask,
)
loss = self.criterion(out, label, score)
logs = {"loss": loss}
self.training_step_outputs.append(logs)
self.log("train_loss", loss, prog_bar=True, logger=True, sync_dist=True)
return loss
def on_train_epoch_end(self):
loss = (
torch.stack([x["loss"] for x in self.training_step_outputs])
.mean()
.detach()
.cpu()
.numpy()
)
self.train_loss.append(loss)
print("train_epoch:", self.current_epoch, "avg_loss:", loss)
self.training_step_outputs.clear()
def validation_step(self, batch, batch_idx):
label = batch["label"]
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
score = batch["score"]
cls, out = self(
input_ids,
attention_mask,
)
loss = self.criterion(out, label, score)
logs = {"loss": loss}
self.validation_step_outputs.append(logs)
self.log("validation_loss", loss, prog_bar=True, logger=True, sync_dist=True)
return loss
def on_validation_epoch_end(self):
loss = (
torch.stack([x["loss"] for x in self.validation_step_outputs])
.mean()
.detach()
.cpu()
.numpy()
)
self.val_loss.append(loss)
print("val_epoch:", self.current_epoch, "avg_loss:", loss)
self.validation_step_outputs.clear()
class BERTContrastiveLearning_samp(pl.LightningModule):
def __init__(self, n_batches=None, n_epochs=None, lr=None, **kwargs):
super().__init__()
### Parameters
self.n_batches = n_batches
self.n_epochs = n_epochs
self.lr = lr
### Architecture
self.bert = AutoModel.from_pretrained(
"emilyalsentzer/Bio_ClinicalBERT", return_dict=True
)
# Unfreeze encoder
self.bert_layer_num = sum(1 for _ in self.bert.named_parameters())
self.num_unfreeze_layer = self.bert_layer_num
self.ratio_unfreeze_layer = 0.0
if kwargs:
for key, value in kwargs.items():
if key == "unfreeze" and isinstance(value, float):
assert (
value >= 0.0 and value <= 1.0
), "ValueError: value must be a ratio between 0.0 and 1.0"
self.ratio_unfreeze_layer = value
if self.ratio_unfreeze_layer > 0.0:
self.num_unfreeze_layer = int(
self.bert_layer_num * self.ratio_unfreeze_layer
)
for param in list(self.bert.parameters())[: -self.num_unfreeze_layer]:
param.requires_grad = False
# Linear projector
self.projector = nn.Linear(self.bert.config.hidden_size, 128)
print("Model Initialized!")
### Loss
self.criterion = ContrastiveLoss_samp()
### Logs
self.train_loss, self.val_loss, self.test_loss = [], [], []
self.training_step_outputs = []
self.validation_step_outputs = []
def configure_optimizers(self):
# Optimizer
self.trainable_params = [
param for param in self.parameters() if param.requires_grad
]
optimizer = AdamW(self.trainable_params, lr=self.lr)
# Scheduler
# warmup_steps = self.n_batches // 3
# total_steps = self.n_batches * self.n_epochs - warmup_steps
# scheduler = get_linear_schedule_with_warmup(
# optimizer, warmup_steps, total_steps
# )
return [optimizer]
def forward(self, input_ids, attention_mask):
emb = self.bert(input_ids=input_ids, attention_mask=attention_mask)
cls = emb.pooler_output
out = self.projector(cls)
return cls, out
def training_step(self, batch, batch_idx):
label = batch["label"]
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
cls, out = self(
input_ids,
attention_mask,
)
loss = self.criterion(out, label)
logs = {"loss": loss}
self.training_step_outputs.append(logs)
self.log("train_loss", loss, prog_bar=True, logger=True, sync_dist=True)
return loss
def on_train_epoch_end(self):
loss = (
torch.stack([x["loss"] for x in self.training_step_outputs])
.mean()
.detach()
.cpu()
.numpy()
)
self.train_loss.append(loss)
print("train_epoch:", self.current_epoch, "avg_loss:", loss)
self.training_step_outputs.clear()
def validation_step(self, batch, batch_idx):
label = batch["label"]
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
cls, out = self(
input_ids,
attention_mask,
)
loss = self.criterion(out, label)
logs = {"loss": loss}
self.validation_step_outputs.append(logs)
self.log("validation_loss", loss, prog_bar=True, logger=True, sync_dist=True)
return loss
def on_validation_epoch_end(self):
loss = (
torch.stack([x["loss"] for x in self.validation_step_outputs])
.mean()
.detach()
.cpu()
.numpy()
)
self.val_loss.append(loss)
print("val_epoch:", self.current_epoch, "avg_loss:", loss)
self.validation_step_outputs.clear()
class BERTContrastiveLearning_samp_w(pl.LightningModule):
def __init__(self, n_batches=None, n_epochs=None, lr=None, **kwargs):
super().__init__()
### Parameters
self.n_batches = n_batches
self.n_epochs = n_epochs
self.lr = lr
### Architecture
self.bert = AutoModel.from_pretrained(
"emilyalsentzer/Bio_ClinicalBERT", return_dict=True
)
# Unfreeze encoder
self.bert_layer_num = sum(1 for _ in self.bert.named_parameters())
self.num_unfreeze_layer = self.bert_layer_num
self.ratio_unfreeze_layer = 0.0
if kwargs:
for key, value in kwargs.items():
if key == "unfreeze" and isinstance(value, float):
assert (
value >= 0.0 and value <= 1.0
), "ValueError: value must be a ratio between 0.0 and 1.0"
self.ratio_unfreeze_layer = value
if self.ratio_unfreeze_layer > 0.0:
self.num_unfreeze_layer = int(
self.bert_layer_num * self.ratio_unfreeze_layer
)
for param in list(self.bert.parameters())[: -self.num_unfreeze_layer]:
param.requires_grad = False
# Linear projector
self.projector = nn.Linear(self.bert.config.hidden_size, 128)
print("Model Initialized!")
### Loss
self.criterion = ContrastiveLoss_samp_w()
### Logs
self.train_loss, self.val_loss, self.test_loss = [], [], []
self.training_step_outputs = []
self.validation_step_outputs = []
def configure_optimizers(self):
# Optimizer
self.trainable_params = [
param for param in self.parameters() if param.requires_grad
]
optimizer = AdamW(self.trainable_params, lr=self.lr)
# Scheduler
# warmup_steps = self.n_batches // 3
# total_steps = self.n_batches * self.n_epochs - warmup_steps
# scheduler = get_linear_schedule_with_warmup(
# optimizer, warmup_steps, total_steps
# )
return [optimizer]
def forward(self, input_ids, attention_mask):
emb = self.bert(input_ids=input_ids, attention_mask=attention_mask)
cls = emb.pooler_output
out = self.projector(cls)
return cls, out
def training_step(self, batch, batch_idx):
label = batch["label"]
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
score = batch["score"]
cls, out = self(
input_ids,
attention_mask,
)
loss = self.criterion(out, label, score)
logs = {"loss": loss}
self.training_step_outputs.append(logs)
self.log("train_loss", loss, prog_bar=True, logger=True, sync_dist=True)
return loss
def on_train_epoch_end(self):
loss = (
torch.stack([x["loss"] for x in self.training_step_outputs])
.mean()
.detach()
.cpu()
.numpy()
)
self.train_loss.append(loss)
print("train_epoch:", self.current_epoch, "avg_loss:", loss)
self.training_step_outputs.clear()
def validation_step(self, batch, batch_idx):
label = batch["label"]
input_ids = batch["input_ids"]
attention_mask = batch["attention_mask"]
score = batch["score"]
cls, out = self(
input_ids,
attention_mask,
)
loss = self.criterion(out, label, score)
logs = {"loss": loss}
self.validation_step_outputs.append(logs)
self.log("validation_loss", loss, prog_bar=True, logger=True, sync_dist=True)
return loss
def on_validation_epoch_end(self):
loss = (
torch.stack([x["loss"] for x in self.validation_step_outputs])
.mean()
.detach()
.cpu()
.numpy()
)
self.val_loss.append(loss)
print("val_epoch:", self.current_epoch, "avg_loss:", loss)
self.validation_step_outputs.clear()