sxtforreal
commited on
Create dataset.py
Browse filesThis file holds 4 dataset modules for the 4 models respectively: SimCSE, SimCSE_w, Samp, Samp_w.
Run the test at the end to see what's in each training batch.
- dataset.py +758 -0
dataset.py
ADDED
@@ -0,0 +1,758 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import torch
|
3 |
+
from torch.utils.data import Dataset, DataLoader
|
4 |
+
from torch.nn.utils.rnn import pad_sequence
|
5 |
+
import lightning.pytorch as pl
|
6 |
+
import config
|
7 |
+
import sys
|
8 |
+
|
9 |
+
sys.path.append("/home/sunx/data/aiiih/projects/sunx/ccf_fuzzy_diag")
|
10 |
+
from data_proc.data_gen import (
|
11 |
+
positive_generator,
|
12 |
+
negative_generator,
|
13 |
+
get_mentioned_code,
|
14 |
+
)
|
15 |
+
|
16 |
+
|
17 |
+
##### General
|
18 |
+
class ContrastiveLearningDataset(Dataset):
|
19 |
+
def __init__(
|
20 |
+
self,
|
21 |
+
data: pd.DataFrame,
|
22 |
+
):
|
23 |
+
self.data = data
|
24 |
+
|
25 |
+
def __len__(self):
|
26 |
+
return len(self.data)
|
27 |
+
|
28 |
+
def __getitem__(self, index):
|
29 |
+
data_row = self.data.iloc[index]
|
30 |
+
sentence = data_row.sentences
|
31 |
+
return sentence
|
32 |
+
|
33 |
+
|
34 |
+
def max_pairwise_sim(sentence1, sentence2, current_df, query_df, sim_df, all_d):
|
35 |
+
"""Returns the maximum ontology similarity score between concept pairs mentioned in sentence1 and sentence2.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
sentence1: anchor sentence
|
39 |
+
sentence2: negative sentence
|
40 |
+
current_df: the dataset where anchor sentence stays
|
41 |
+
query_df: the union of training and validation sets
|
42 |
+
dictionary: cardiac-related {concepts: synonyms}
|
43 |
+
sim_df: the dataset of pairwise ontology similarity score
|
44 |
+
all_d: the dataset of [concepts, synonyms, list of ancestor concepts]
|
45 |
+
"""
|
46 |
+
# retrieve concepts from the two sentences
|
47 |
+
anchor_codes = get_mentioned_code(sentence1, current_df)
|
48 |
+
other_codes = get_mentioned_code(sentence2, query_df)
|
49 |
+
|
50 |
+
# create snomed-ct code pairs and calculate the score using sim_df
|
51 |
+
code_pairs = list(zip(anchor_codes, other_codes))
|
52 |
+
sim_scores = []
|
53 |
+
for pair in code_pairs:
|
54 |
+
code1 = pair[0]
|
55 |
+
code2 = pair[1]
|
56 |
+
if code1 == code2:
|
57 |
+
result = len(all_d.loc[all_d["concept"] == code1, "ancestors"].values[0])
|
58 |
+
sim_scores.append(result)
|
59 |
+
else:
|
60 |
+
try:
|
61 |
+
result = sim_df.loc[
|
62 |
+
(sim_df["Code1"] == code1) & (sim_df["Code2"] == code2), "score"
|
63 |
+
].values[0]
|
64 |
+
sim_scores.append(result)
|
65 |
+
except:
|
66 |
+
result = sim_df.loc[
|
67 |
+
(sim_df["Code1"] == code2) & (sim_df["Code2"] == code1), "score"
|
68 |
+
].values[0]
|
69 |
+
sim_scores.append(result)
|
70 |
+
if len(sim_scores) > 0:
|
71 |
+
return max(sim_scores)
|
72 |
+
else:
|
73 |
+
return 0
|
74 |
+
|
75 |
+
|
76 |
+
##### SimCSE
|
77 |
+
def collate_simcse(batch, tokenizer):
|
78 |
+
"""
|
79 |
+
Use the first sample in the batch as the anchor,
|
80 |
+
use the duplicate of anchor as the positive,
|
81 |
+
use the rest of the batch as negatives.
|
82 |
+
"""
|
83 |
+
anchor = batch[0] # use the first sample in the batch as anchor
|
84 |
+
positive = anchor[:] # create a duplicate of anchor as positive
|
85 |
+
negatives = batch[1:] # everything else as negatives
|
86 |
+
df = pd.DataFrame(columns=["label", "input_ids", "attention_mask"])
|
87 |
+
|
88 |
+
anchor_token = tokenizer.encode_plus(
|
89 |
+
anchor,
|
90 |
+
return_token_type_ids=False,
|
91 |
+
return_attention_mask=True,
|
92 |
+
return_tensors="pt",
|
93 |
+
)
|
94 |
+
anchor_row = pd.DataFrame(
|
95 |
+
{
|
96 |
+
"label": 0,
|
97 |
+
"input_ids": anchor_token["input_ids"].tolist(),
|
98 |
+
"attention_mask": anchor_token["attention_mask"].tolist(),
|
99 |
+
}
|
100 |
+
)
|
101 |
+
df = pd.concat([df, anchor_row])
|
102 |
+
|
103 |
+
pos_token = tokenizer.encode_plus(
|
104 |
+
positive,
|
105 |
+
return_token_type_ids=False,
|
106 |
+
return_attention_mask=True,
|
107 |
+
return_tensors="pt",
|
108 |
+
)
|
109 |
+
pos_row = pd.DataFrame(
|
110 |
+
{
|
111 |
+
"label": 1,
|
112 |
+
"input_ids": pos_token["input_ids"].tolist(),
|
113 |
+
"attention_mask": pos_token["attention_mask"].tolist(),
|
114 |
+
}
|
115 |
+
)
|
116 |
+
df = pd.concat([df, pos_row])
|
117 |
+
|
118 |
+
for neg in negatives:
|
119 |
+
neg_token = tokenizer.encode_plus(
|
120 |
+
neg,
|
121 |
+
return_token_type_ids=False,
|
122 |
+
return_attention_mask=True,
|
123 |
+
return_tensors="pt",
|
124 |
+
)
|
125 |
+
neg_row = pd.DataFrame(
|
126 |
+
{
|
127 |
+
"label": 2,
|
128 |
+
"input_ids": neg_token["input_ids"].tolist(),
|
129 |
+
"attention_mask": neg_token["attention_mask"].tolist(),
|
130 |
+
}
|
131 |
+
)
|
132 |
+
df = pd.concat([df, neg_row])
|
133 |
+
|
134 |
+
label = torch.tensor(df["label"].tolist())
|
135 |
+
|
136 |
+
input_ids_tsr = list(map(lambda x: torch.tensor(x), df["input_ids"]))
|
137 |
+
padded_input_ids = pad_sequence(input_ids_tsr, padding_value=tokenizer.pad_token_id)
|
138 |
+
padded_input_ids = torch.transpose(padded_input_ids, 0, 1)
|
139 |
+
|
140 |
+
attention_mask_tsr = list(map(lambda x: torch.tensor(x), df["attention_mask"]))
|
141 |
+
padded_attention_mask = pad_sequence(attention_mask_tsr, padding_value=0)
|
142 |
+
padded_attention_mask = torch.transpose(padded_attention_mask, 0, 1)
|
143 |
+
|
144 |
+
return {
|
145 |
+
"label": label,
|
146 |
+
"input_ids": padded_input_ids,
|
147 |
+
"attention_mask": padded_attention_mask,
|
148 |
+
}
|
149 |
+
|
150 |
+
|
151 |
+
def create_dataloader_simcse(
|
152 |
+
dataset,
|
153 |
+
tokenizer,
|
154 |
+
shuffle,
|
155 |
+
):
|
156 |
+
return DataLoader(
|
157 |
+
dataset,
|
158 |
+
batch_size=config.batch_size_simcse,
|
159 |
+
shuffle=shuffle,
|
160 |
+
num_workers=config.num_workers,
|
161 |
+
collate_fn=lambda batch: collate_simcse(
|
162 |
+
batch,
|
163 |
+
tokenizer,
|
164 |
+
),
|
165 |
+
)
|
166 |
+
|
167 |
+
|
168 |
+
class ContrastiveLearningDataModule_simcse(pl.LightningDataModule):
|
169 |
+
def __init__(
|
170 |
+
self,
|
171 |
+
train_df,
|
172 |
+
val_df,
|
173 |
+
tokenizer,
|
174 |
+
):
|
175 |
+
super().__init__()
|
176 |
+
self.train_df = train_df
|
177 |
+
self.val_df = val_df
|
178 |
+
self.tokenizer = tokenizer
|
179 |
+
|
180 |
+
def setup(self, stage=None):
|
181 |
+
self.train_dataset = ContrastiveLearningDataset(self.train_df)
|
182 |
+
self.val_dataset = ContrastiveLearningDataset(self.val_df)
|
183 |
+
|
184 |
+
def train_dataloader(self):
|
185 |
+
return create_dataloader_simcse(
|
186 |
+
self.train_dataset,
|
187 |
+
self.tokenizer,
|
188 |
+
shuffle=True,
|
189 |
+
)
|
190 |
+
|
191 |
+
def val_dataloader(self):
|
192 |
+
return create_dataloader_simcse(
|
193 |
+
self.val_dataset,
|
194 |
+
self.tokenizer,
|
195 |
+
shuffle=False,
|
196 |
+
)
|
197 |
+
|
198 |
+
|
199 |
+
##### SimCSE_w
|
200 |
+
def collate_simcse_w(
|
201 |
+
batch,
|
202 |
+
current_df,
|
203 |
+
query_df,
|
204 |
+
tokenizer,
|
205 |
+
sim_df,
|
206 |
+
all_d,
|
207 |
+
):
|
208 |
+
"""
|
209 |
+
Anchor: 0
|
210 |
+
Positive: 1
|
211 |
+
Negative: 2
|
212 |
+
"""
|
213 |
+
anchor = batch[0]
|
214 |
+
positive = anchor[:]
|
215 |
+
negatives = batch[1:]
|
216 |
+
df = pd.DataFrame(columns=["label", "input_ids", "attention_mask", "score"])
|
217 |
+
|
218 |
+
anchor_token = tokenizer.encode_plus(
|
219 |
+
anchor,
|
220 |
+
return_token_type_ids=False,
|
221 |
+
return_attention_mask=True,
|
222 |
+
return_tensors="pt",
|
223 |
+
)
|
224 |
+
|
225 |
+
anchor_row = pd.DataFrame(
|
226 |
+
{
|
227 |
+
"label": 0,
|
228 |
+
"input_ids": anchor_token["input_ids"].tolist(),
|
229 |
+
"attention_mask": anchor_token["attention_mask"].tolist(),
|
230 |
+
"score": 1,
|
231 |
+
}
|
232 |
+
)
|
233 |
+
df = pd.concat([df, anchor_row])
|
234 |
+
|
235 |
+
pos_token = tokenizer.encode_plus(
|
236 |
+
positive,
|
237 |
+
return_token_type_ids=False,
|
238 |
+
return_attention_mask=True,
|
239 |
+
return_tensors="pt",
|
240 |
+
)
|
241 |
+
pos_row = pd.DataFrame(
|
242 |
+
{
|
243 |
+
"label": 1,
|
244 |
+
"input_ids": pos_token["input_ids"].tolist(),
|
245 |
+
"attention_mask": pos_token["attention_mask"].tolist(),
|
246 |
+
"score": 1,
|
247 |
+
}
|
248 |
+
)
|
249 |
+
df = pd.concat([df, pos_row])
|
250 |
+
|
251 |
+
for neg in negatives:
|
252 |
+
neg_token = tokenizer.encode_plus(
|
253 |
+
neg,
|
254 |
+
return_token_type_ids=False,
|
255 |
+
return_attention_mask=True,
|
256 |
+
return_tensors="pt",
|
257 |
+
)
|
258 |
+
score = max_pairwise_sim(anchor, neg, current_df, query_df, sim_df, all_d)
|
259 |
+
offset = 8
|
260 |
+
score = score + offset
|
261 |
+
neg_row = pd.DataFrame(
|
262 |
+
{
|
263 |
+
"label": 2,
|
264 |
+
"input_ids": neg_token["input_ids"].tolist(),
|
265 |
+
"attention_mask": neg_token["attention_mask"].tolist(),
|
266 |
+
"score": score,
|
267 |
+
}
|
268 |
+
)
|
269 |
+
df = pd.concat([df, neg_row])
|
270 |
+
|
271 |
+
label = torch.tensor(df["label"].tolist())
|
272 |
+
|
273 |
+
input_ids_tsr = list(map(lambda x: torch.tensor(x), df["input_ids"]))
|
274 |
+
padded_input_ids = pad_sequence(input_ids_tsr, padding_value=tokenizer.pad_token_id)
|
275 |
+
padded_input_ids = torch.transpose(padded_input_ids, 0, 1)
|
276 |
+
|
277 |
+
attention_mask_tsr = list(map(lambda x: torch.tensor(x), df["attention_mask"]))
|
278 |
+
padded_attention_mask = pad_sequence(attention_mask_tsr, padding_value=0)
|
279 |
+
padded_attention_mask = torch.transpose(padded_attention_mask, 0, 1)
|
280 |
+
|
281 |
+
score = torch.tensor(df["score"].tolist())
|
282 |
+
|
283 |
+
return {
|
284 |
+
"label": label,
|
285 |
+
"input_ids": padded_input_ids,
|
286 |
+
"attention_mask": padded_attention_mask,
|
287 |
+
"score": score,
|
288 |
+
}
|
289 |
+
|
290 |
+
|
291 |
+
def create_dataloader_simcse_w(
|
292 |
+
dataset,
|
293 |
+
current_df,
|
294 |
+
query_df,
|
295 |
+
tokenizer,
|
296 |
+
sim_df,
|
297 |
+
all_d,
|
298 |
+
shuffle,
|
299 |
+
):
|
300 |
+
return DataLoader(
|
301 |
+
dataset,
|
302 |
+
batch_size=config.batch_size_simcse,
|
303 |
+
shuffle=shuffle,
|
304 |
+
num_workers=config.num_workers,
|
305 |
+
collate_fn=lambda batch: collate_simcse_w(
|
306 |
+
batch,
|
307 |
+
current_df,
|
308 |
+
query_df,
|
309 |
+
tokenizer,
|
310 |
+
sim_df,
|
311 |
+
all_d,
|
312 |
+
),
|
313 |
+
)
|
314 |
+
|
315 |
+
|
316 |
+
class ContrastiveLearningDataModule_simcse_w(pl.LightningDataModule):
|
317 |
+
def __init__(
|
318 |
+
self,
|
319 |
+
train_df,
|
320 |
+
val_df,
|
321 |
+
query_df,
|
322 |
+
tokenizer,
|
323 |
+
sim_df,
|
324 |
+
all_d,
|
325 |
+
):
|
326 |
+
super().__init__()
|
327 |
+
self.train_df = train_df
|
328 |
+
self.val_df = val_df
|
329 |
+
self.query_df = query_df
|
330 |
+
self.tokenizer = tokenizer
|
331 |
+
self.sim_df = sim_df
|
332 |
+
self.all_d = all_d
|
333 |
+
|
334 |
+
def setup(self, stage=None):
|
335 |
+
self.train_dataset = ContrastiveLearningDataset(self.train_df)
|
336 |
+
self.val_dataset = ContrastiveLearningDataset(self.val_df)
|
337 |
+
|
338 |
+
def train_dataloader(self):
|
339 |
+
return create_dataloader_simcse_w(
|
340 |
+
self.train_dataset,
|
341 |
+
self.train_df,
|
342 |
+
self.query_df,
|
343 |
+
self.tokenizer,
|
344 |
+
self.sim_df,
|
345 |
+
self.all_d,
|
346 |
+
shuffle=True,
|
347 |
+
)
|
348 |
+
|
349 |
+
def val_dataloader(self):
|
350 |
+
return create_dataloader_simcse_w(
|
351 |
+
self.val_dataset,
|
352 |
+
self.val_df,
|
353 |
+
self.query_df,
|
354 |
+
self.tokenizer,
|
355 |
+
self.sim_df,
|
356 |
+
self.all_d,
|
357 |
+
shuffle=False,
|
358 |
+
)
|
359 |
+
|
360 |
+
|
361 |
+
##### Samp
|
362 |
+
def collate_samp(
|
363 |
+
sentence,
|
364 |
+
current_df,
|
365 |
+
query_df,
|
366 |
+
tokenizer,
|
367 |
+
dictionary,
|
368 |
+
sim_df,
|
369 |
+
):
|
370 |
+
|
371 |
+
anchor = sentence[0]
|
372 |
+
positives = positive_generator(
|
373 |
+
anchor, current_df, query_df, dictionary, num_pos=config.num_pos
|
374 |
+
)
|
375 |
+
negatives = negative_generator(
|
376 |
+
anchor,
|
377 |
+
current_df,
|
378 |
+
query_df,
|
379 |
+
dictionary,
|
380 |
+
sim_df,
|
381 |
+
num_neg=config.num_neg,
|
382 |
+
)
|
383 |
+
df = pd.DataFrame(columns=["label", "input_ids", "attention_mask"])
|
384 |
+
anchor_token = tokenizer.encode_plus(
|
385 |
+
anchor,
|
386 |
+
return_token_type_ids=False,
|
387 |
+
return_attention_mask=True,
|
388 |
+
return_tensors="pt",
|
389 |
+
)
|
390 |
+
|
391 |
+
anchor_row = pd.DataFrame(
|
392 |
+
{
|
393 |
+
"label": 0,
|
394 |
+
"input_ids": anchor_token["input_ids"].tolist(),
|
395 |
+
"attention_mask": anchor_token["attention_mask"].tolist(),
|
396 |
+
}
|
397 |
+
)
|
398 |
+
df = pd.concat([df, anchor_row])
|
399 |
+
|
400 |
+
for pos in positives:
|
401 |
+
token = tokenizer.encode_plus(
|
402 |
+
pos,
|
403 |
+
return_token_type_ids=False,
|
404 |
+
return_attention_mask=True,
|
405 |
+
return_tensors="pt",
|
406 |
+
)
|
407 |
+
row = pd.DataFrame(
|
408 |
+
{
|
409 |
+
"label": 1,
|
410 |
+
"input_ids": token["input_ids"].tolist(),
|
411 |
+
"attention_mask": token["attention_mask"].tolist(),
|
412 |
+
}
|
413 |
+
)
|
414 |
+
df = pd.concat([df, row])
|
415 |
+
|
416 |
+
for neg in negatives:
|
417 |
+
token = tokenizer.encode_plus(
|
418 |
+
neg,
|
419 |
+
return_token_type_ids=False,
|
420 |
+
return_attention_mask=True,
|
421 |
+
return_tensors="pt",
|
422 |
+
)
|
423 |
+
row = pd.DataFrame(
|
424 |
+
{
|
425 |
+
"label": 2,
|
426 |
+
"input_ids": token["input_ids"].tolist(),
|
427 |
+
"attention_mask": token["attention_mask"].tolist(),
|
428 |
+
}
|
429 |
+
)
|
430 |
+
df = pd.concat([df, row])
|
431 |
+
|
432 |
+
label = torch.tensor(df["label"].tolist())
|
433 |
+
|
434 |
+
input_ids_tsr = list(map(lambda x: torch.tensor(x), df["input_ids"]))
|
435 |
+
padded_input_ids = pad_sequence(input_ids_tsr, padding_value=tokenizer.pad_token_id)
|
436 |
+
padded_input_ids = torch.transpose(padded_input_ids, 0, 1)
|
437 |
+
|
438 |
+
attention_mask_tsr = list(map(lambda x: torch.tensor(x), df["attention_mask"]))
|
439 |
+
padded_attention_mask = pad_sequence(attention_mask_tsr, padding_value=0)
|
440 |
+
padded_attention_mask = torch.transpose(padded_attention_mask, 0, 1)
|
441 |
+
|
442 |
+
return {
|
443 |
+
"label": label,
|
444 |
+
"input_ids": padded_input_ids,
|
445 |
+
"attention_mask": padded_attention_mask,
|
446 |
+
}
|
447 |
+
|
448 |
+
|
449 |
+
def create_dataloader_samp(
|
450 |
+
dataset,
|
451 |
+
current_df,
|
452 |
+
query_df,
|
453 |
+
tokenizer,
|
454 |
+
dictionary,
|
455 |
+
sim_df,
|
456 |
+
shuffle,
|
457 |
+
):
|
458 |
+
return DataLoader(
|
459 |
+
dataset,
|
460 |
+
batch_size=config.batch_size,
|
461 |
+
shuffle=shuffle,
|
462 |
+
num_workers=config.num_workers,
|
463 |
+
collate_fn=lambda batch: collate_samp(
|
464 |
+
batch,
|
465 |
+
current_df,
|
466 |
+
query_df,
|
467 |
+
tokenizer,
|
468 |
+
dictionary,
|
469 |
+
sim_df,
|
470 |
+
),
|
471 |
+
)
|
472 |
+
|
473 |
+
|
474 |
+
class ContrastiveLearningDataModule_samp(pl.LightningDataModule):
|
475 |
+
def __init__(
|
476 |
+
self,
|
477 |
+
train_df,
|
478 |
+
val_df,
|
479 |
+
query_df,
|
480 |
+
tokenizer,
|
481 |
+
dictionary,
|
482 |
+
sim_df,
|
483 |
+
):
|
484 |
+
super().__init__()
|
485 |
+
self.train_df = train_df
|
486 |
+
self.val_df = val_df
|
487 |
+
self.query_df = query_df
|
488 |
+
self.tokenizer = tokenizer
|
489 |
+
self.dictionary = dictionary
|
490 |
+
self.sim_df = sim_df
|
491 |
+
|
492 |
+
def setup(self, stage=None):
|
493 |
+
self.train_dataset = ContrastiveLearningDataset(self.train_df)
|
494 |
+
self.val_dataset = ContrastiveLearningDataset(self.val_df)
|
495 |
+
|
496 |
+
def train_dataloader(self):
|
497 |
+
return create_dataloader_samp(
|
498 |
+
self.train_dataset,
|
499 |
+
self.train_df,
|
500 |
+
self.query_df,
|
501 |
+
self.tokenizer,
|
502 |
+
self.dictionary,
|
503 |
+
self.sim_df,
|
504 |
+
shuffle=True,
|
505 |
+
)
|
506 |
+
|
507 |
+
def val_dataloader(self):
|
508 |
+
return create_dataloader_samp(
|
509 |
+
self.val_dataset,
|
510 |
+
self.val_df,
|
511 |
+
self.query_df,
|
512 |
+
self.tokenizer,
|
513 |
+
self.dictionary,
|
514 |
+
self.sim_df,
|
515 |
+
shuffle=False,
|
516 |
+
)
|
517 |
+
|
518 |
+
|
519 |
+
##### Samp_w
|
520 |
+
def collate_samp_w(
|
521 |
+
sentence,
|
522 |
+
current_df,
|
523 |
+
query_df,
|
524 |
+
tokenizer,
|
525 |
+
dictionary,
|
526 |
+
sim_df,
|
527 |
+
all_d,
|
528 |
+
):
|
529 |
+
"""
|
530 |
+
Anchor: 0
|
531 |
+
Positive: 1
|
532 |
+
Negative: 2
|
533 |
+
"""
|
534 |
+
anchor = sentence[0]
|
535 |
+
positives = positive_generator(
|
536 |
+
anchor, current_df, query_df, dictionary, num_pos=config.num_pos
|
537 |
+
)
|
538 |
+
negatives = negative_generator(
|
539 |
+
anchor,
|
540 |
+
current_df,
|
541 |
+
query_df,
|
542 |
+
dictionary,
|
543 |
+
sim_df,
|
544 |
+
num_neg=config.num_neg,
|
545 |
+
)
|
546 |
+
df = pd.DataFrame(columns=["label", "input_ids", "attention_mask", "score"])
|
547 |
+
anchor_token = tokenizer.encode_plus(
|
548 |
+
anchor,
|
549 |
+
return_token_type_ids=False,
|
550 |
+
return_attention_mask=True,
|
551 |
+
return_tensors="pt",
|
552 |
+
)
|
553 |
+
|
554 |
+
anchor_row = pd.DataFrame(
|
555 |
+
{
|
556 |
+
"label": 0,
|
557 |
+
"input_ids": anchor_token["input_ids"].tolist(),
|
558 |
+
"attention_mask": anchor_token["attention_mask"].tolist(),
|
559 |
+
"score": 1,
|
560 |
+
}
|
561 |
+
)
|
562 |
+
df = pd.concat([df, anchor_row])
|
563 |
+
|
564 |
+
for pos in positives:
|
565 |
+
token = tokenizer.encode_plus(
|
566 |
+
pos,
|
567 |
+
return_token_type_ids=False,
|
568 |
+
return_attention_mask=True,
|
569 |
+
return_tensors="pt",
|
570 |
+
)
|
571 |
+
row = pd.DataFrame(
|
572 |
+
{
|
573 |
+
"label": 1,
|
574 |
+
"input_ids": token["input_ids"].tolist(),
|
575 |
+
"attention_mask": token["attention_mask"].tolist(),
|
576 |
+
"score": 1,
|
577 |
+
}
|
578 |
+
)
|
579 |
+
df = pd.concat([df, row])
|
580 |
+
|
581 |
+
for neg in negatives:
|
582 |
+
token = tokenizer.encode_plus(
|
583 |
+
neg,
|
584 |
+
return_token_type_ids=False,
|
585 |
+
return_attention_mask=True,
|
586 |
+
return_tensors="pt",
|
587 |
+
)
|
588 |
+
score = max_pairwise_sim(anchor, neg, current_df, query_df, sim_df, all_d)
|
589 |
+
offset = 8 # all negative scores start with 8 to distinguish from the positives
|
590 |
+
score = score + offset
|
591 |
+
row = pd.DataFrame(
|
592 |
+
{
|
593 |
+
"label": 2,
|
594 |
+
"input_ids": token["input_ids"].tolist(),
|
595 |
+
"attention_mask": token["attention_mask"].tolist(),
|
596 |
+
"score": score,
|
597 |
+
}
|
598 |
+
)
|
599 |
+
df = pd.concat([df, row])
|
600 |
+
|
601 |
+
label = torch.tensor(df["label"].tolist())
|
602 |
+
|
603 |
+
input_ids_tsr = list(map(lambda x: torch.tensor(x), df["input_ids"]))
|
604 |
+
padded_input_ids = pad_sequence(input_ids_tsr, padding_value=tokenizer.pad_token_id)
|
605 |
+
padded_input_ids = torch.transpose(padded_input_ids, 0, 1)
|
606 |
+
|
607 |
+
attention_mask_tsr = list(map(lambda x: torch.tensor(x), df["attention_mask"]))
|
608 |
+
padded_attention_mask = pad_sequence(attention_mask_tsr, padding_value=0)
|
609 |
+
padded_attention_mask = torch.transpose(padded_attention_mask, 0, 1)
|
610 |
+
|
611 |
+
score = torch.tensor(df["score"].tolist())
|
612 |
+
|
613 |
+
return {
|
614 |
+
"label": label,
|
615 |
+
"input_ids": padded_input_ids,
|
616 |
+
"attention_mask": padded_attention_mask,
|
617 |
+
"score": score,
|
618 |
+
}
|
619 |
+
|
620 |
+
|
621 |
+
def create_dataloader_samp_w(
|
622 |
+
dataset,
|
623 |
+
current_df,
|
624 |
+
query_df,
|
625 |
+
tokenizer,
|
626 |
+
dictionary,
|
627 |
+
sim_df,
|
628 |
+
all_d,
|
629 |
+
shuffle,
|
630 |
+
):
|
631 |
+
return DataLoader(
|
632 |
+
dataset,
|
633 |
+
batch_size=config.batch_size,
|
634 |
+
shuffle=shuffle,
|
635 |
+
num_workers=config.num_workers,
|
636 |
+
collate_fn=lambda batch: collate_samp_w(
|
637 |
+
batch,
|
638 |
+
current_df,
|
639 |
+
query_df,
|
640 |
+
tokenizer,
|
641 |
+
dictionary,
|
642 |
+
sim_df,
|
643 |
+
all_d,
|
644 |
+
),
|
645 |
+
)
|
646 |
+
|
647 |
+
|
648 |
+
class ContrastiveLearningDataModule_samp_w(pl.LightningDataModule):
|
649 |
+
def __init__(
|
650 |
+
self,
|
651 |
+
train_df,
|
652 |
+
val_df,
|
653 |
+
query_df,
|
654 |
+
tokenizer,
|
655 |
+
dictionary,
|
656 |
+
sim_df,
|
657 |
+
all_d,
|
658 |
+
):
|
659 |
+
super().__init__()
|
660 |
+
self.train_df = train_df
|
661 |
+
self.val_df = val_df
|
662 |
+
self.query_df = query_df
|
663 |
+
self.tokenizer = tokenizer
|
664 |
+
self.dictionary = dictionary
|
665 |
+
self.sim_df = sim_df
|
666 |
+
self.all_d = all_d
|
667 |
+
|
668 |
+
def setup(self, stage=None):
|
669 |
+
self.train_dataset = ContrastiveLearningDataset(self.train_df)
|
670 |
+
self.val_dataset = ContrastiveLearningDataset(self.val_df)
|
671 |
+
|
672 |
+
def train_dataloader(self):
|
673 |
+
return create_dataloader_samp_w(
|
674 |
+
self.train_dataset,
|
675 |
+
self.train_df,
|
676 |
+
self.query_df,
|
677 |
+
self.tokenizer,
|
678 |
+
self.dictionary,
|
679 |
+
self.sim_df,
|
680 |
+
self.all_d,
|
681 |
+
shuffle=True,
|
682 |
+
)
|
683 |
+
|
684 |
+
def val_dataloader(self):
|
685 |
+
return create_dataloader_samp_w(
|
686 |
+
self.val_dataset,
|
687 |
+
self.val_df,
|
688 |
+
self.query_df,
|
689 |
+
self.tokenizer,
|
690 |
+
self.dictionary,
|
691 |
+
self.sim_df,
|
692 |
+
self.all_d,
|
693 |
+
shuffle=False,
|
694 |
+
)
|
695 |
+
|
696 |
+
|
697 |
+
#### Test
|
698 |
+
from transformers import AutoTokenizer
|
699 |
+
from ast import literal_eval
|
700 |
+
from sklearn.model_selection import train_test_split
|
701 |
+
|
702 |
+
query_df = pd.read_csv(
|
703 |
+
"/home/sunx/data/aiiih/projects/sunx/ccf_fuzzy_diag/data_proc/mimic_data/processed_train/processed.csv"
|
704 |
+
)
|
705 |
+
query_df["concepts"] = query_df["concepts"].apply(literal_eval)
|
706 |
+
query_df["codes"] = query_df["codes"].apply(literal_eval)
|
707 |
+
query_df["codes"] = query_df["codes"].apply(
|
708 |
+
lambda x: [val for val in x if val is not None]
|
709 |
+
) # remove None in lists
|
710 |
+
query_df = query_df.drop(columns=["one_hot"])
|
711 |
+
train_df, val_df = train_test_split(query_df, test_size=config.split_ratio)
|
712 |
+
|
713 |
+
tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT")
|
714 |
+
|
715 |
+
sim_df = pd.read_csv(
|
716 |
+
"/home/sunx/data/aiiih/projects/sunx/ccf_fuzzy_diag/data_proc/pairwise_scores.csv"
|
717 |
+
)
|
718 |
+
|
719 |
+
all_d = pd.read_csv(
|
720 |
+
"/home/sunx/data/aiiih/projects/sunx/ccf_fuzzy_diag/data_proc/all_d_full.csv"
|
721 |
+
)
|
722 |
+
all_d["synonyms"] = all_d["synonyms"].apply(literal_eval)
|
723 |
+
all_d["ancestors"] = all_d["ancestors"].apply(literal_eval)
|
724 |
+
dictionary = dict(zip(all_d["concept"], all_d["synonyms"]))
|
725 |
+
|
726 |
+
d1 = ContrastiveLearningDataModule_simcse(train_df, val_df, tokenizer)
|
727 |
+
d1.setup()
|
728 |
+
train_d1 = d1.train_dataloader()
|
729 |
+
for batch in train_d1:
|
730 |
+
b1 = batch
|
731 |
+
break
|
732 |
+
|
733 |
+
d2 = ContrastiveLearningDataModule_simcse_w(
|
734 |
+
train_df, val_df, query_df, tokenizer, sim_df, all_d
|
735 |
+
)
|
736 |
+
d2.setup()
|
737 |
+
train_d2 = d2.train_dataloader()
|
738 |
+
for batch in train_d2:
|
739 |
+
b2 = batch
|
740 |
+
break
|
741 |
+
|
742 |
+
d3 = ContrastiveLearningDataModule_samp(
|
743 |
+
train_df, val_df, query_df, tokenizer, dictionary, sim_df
|
744 |
+
)
|
745 |
+
d3.setup()
|
746 |
+
train_d3 = d3.train_dataloader()
|
747 |
+
for batch in train_d3:
|
748 |
+
b3 = batch
|
749 |
+
break
|
750 |
+
|
751 |
+
d4 = ContrastiveLearningDataModule_samp_w(
|
752 |
+
train_df, val_df, query_df, tokenizer, dictionary, sim_df, all_d
|
753 |
+
)
|
754 |
+
d4.setup()
|
755 |
+
train_d4 = d4.train_dataloader()
|
756 |
+
for batch in train_d4:
|
757 |
+
b4 = batch
|
758 |
+
break
|