--- license: mit language: - en tags: - NLP pipeline_tag: feature-extraction --- # Usage from transformers import AutoTokenizer from model import ( BERTContrastiveLearning_simcse, BERTContrastiveLearning_simcse_w, BERTContrastiveLearning_samp, BERTContrastiveLearning_samp_w, ) str_list = data["string"].tolist() # Your list of strings here tokenizer = AutoTokenizer.from_pretrained("emilyalsentzer/Bio_ClinicalBERT") tokenized_inputs = tokenizer( str_list, padding=True, max_length=50, truncation=True, return_tensors="pt" ) input_ids = tokenized_inputs["input_ids"] attention_mask = tokenized_inputs["attention_mask"] model1 = BERTContrastiveLearning_simcse.load_from_checkpoint(ckpt1).eval() model2 = BERTContrastiveLearning_simcse_w.load_from_checkpoint(ckpt2).eval() model3 = BERTContrastiveLearning_samp.load_from_checkpoint(ckpt3).eval() model4 = BERTContrastiveLearning_samp_w.load_from_checkpoint(ckpt4).eval() cls, _ = model(input_ids, attention_mask) # embeddings