syedkhalid076 commited on
Commit
abdb5a0
·
verified ·
1 Parent(s): 4e7e88f

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +120 -0
README.md ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - syedkhalid076/Sentiment-Analysis-Over-sampled
4
+ language:
5
+ - en
6
+ metrics:
7
+ - accuracy: 0.9019906657776932
8
+ - accuracy
9
+ model_name: RoBERTa Sentiment Analysis Model v2
10
+ base_model: roberta-base
11
+ library_name: transformers
12
+ tags:
13
+ - Text Classification
14
+ - Transformers
15
+ - Safetensors
16
+ - English
17
+ - roberta
18
+ - Inference Endpoints
19
+ pipeline_tag: text-classification
20
+ ---
21
+
22
+
23
+ # RoBERTa Sentiment Analysis Model v2
24
+
25
+ This repository hosts a fine-tuned [RoBERTa](https://huggingface.co/roberta-base) model for sentiment analysis. The model classifies text into three categories: **Negative (0)**, **Neutral (1)**, and **Positive (2)**. It has been fine-tuned on the [syedkhalid076/Sentiment-Analysis-Over-sampled](https://huggingface.co/datasets/syedkhalid076/Sentiment-Analysis-Over-sampled) dataset and achieves high accuracy.
26
+ The Model is Trained specifically for Feedback Sentiment Analysis for UX Research, but it does perform well on other Sentiment Analysis tasks.
27
+
28
+ ---
29
+
30
+ ## Model Details
31
+
32
+ - **Base Model**: [RoBERTa-base](https://huggingface.co/roberta-base)
33
+ - **Number of Labels**: 3 (0:Negative, 1:Neutral, 2:Positive)
34
+ - **Model Size**: 125M parameters
35
+ - **Language**: English (`en`)
36
+ - **Metrics**: Accuracy: **90.20%**
37
+ - **Tensor Type**: FP32
38
+ - **Dataset**: [syedkhalid076/Sentiment-Analysis-Over-sampled](https://huggingface.co/datasets/syedkhalid076/Sentiment-Analysis-Over-sampled)
39
+ - **Library**: [Transformers](https://github.com/huggingface/transformers)
40
+ - **File Format**: [Safetensors](https://github.com/huggingface/safetensors)
41
+
42
+ ---
43
+
44
+ ## Features
45
+
46
+ - **Text Classification**: Identify the sentiment of input text as Negative, Neutral, or Positive.
47
+ - **High Accuracy**: Achieves 90.20% accuracy on the evaluation dataset.
48
+ - **Hosted on Hugging Face**: Ready-to-use inference endpoints for quick deployment.
49
+ - **Efficient Inference**: Lightweight and efficient, supporting FP32 tensors.
50
+
51
+ ---
52
+
53
+ ## Installation
54
+
55
+ To use this model, ensure you have the `transformers` library installed:
56
+
57
+ ```bash
58
+ pip install transformers
59
+ ```
60
+
61
+ ---
62
+
63
+ ## Usage
64
+
65
+ Here’s how you can load the model and tokenizer and perform inference:
66
+
67
+ ```python
68
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
69
+ import torch
70
+
71
+ # Load tokenizer and model
72
+ tokenizer = AutoTokenizer.from_pretrained("syedkhalid076/RoBERTa-Sentimental-Analysis-Model")
73
+ model = AutoModelForSequenceClassification.from_pretrained("syedkhalid076/RoBERTa-Sentimental-Analysis-Model")
74
+
75
+ # Define input text
76
+ text = "I absolutely love this product! It's fantastic."
77
+
78
+ # Tokenize input
79
+ inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
80
+
81
+ # Perform inference
82
+ outputs = model(**inputs)
83
+ logits = outputs.logits
84
+ predicted_class = torch.argmax(logits, dim=-1).item()
85
+
86
+ # Print results
87
+ sentiment_labels = {0: "Negative", 1: "Neutral", 2: "Positive"}
88
+ print(f"Predicted sentiment: {sentiment_labels[predicted_class]}")
89
+ ```
90
+
91
+ ---
92
+
93
+ ## Dataset
94
+
95
+ This model is fine-tuned on the [syedkhalid076/Sentiment-Analysis-Over-sampled](https://huggingface.co/datasets/syedkhalid076/Sentiment-Analysis-Over-sampled) dataset. The dataset has been carefully preprocessed and oversampled to ensure balanced label representation and improve model performance.
96
+
97
+ ---
98
+
99
+ ## Performance
100
+
101
+ The model was evaluated on a test set and achieved the following metrics:
102
+
103
+ - **Accuracy**: 90.20% (0.9019906657776932)
104
+
105
+ The evaluation strategy includes validation after each epoch and logging metrics for tracking training progress.
106
+
107
+ ---
108
+
109
+ ## Inference Endpoints
110
+
111
+ You can use the Hugging Face Inference API to deploy and test this model in production environments.
112
+
113
+ ---
114
+
115
+
116
+ ## Author
117
+
118
+ **Syed Khalid Hussain**
119
+ UX Designer & Developer
120
+ Specializing in crafting user-centric digital experiences.