|
import os
|
|
import cv2
|
|
import subprocess
|
|
import torch
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
from moviepy.editor import VideoFileClip, AudioFileClip
|
|
from models import Wav2Lip
|
|
import audio
|
|
from datetime import datetime
|
|
import shutil
|
|
import sys
|
|
|
|
|
|
|
|
|
|
import util
|
|
|
|
class Processor:
|
|
def __init__(
|
|
self,
|
|
checkpoint_path=os.path.join(
|
|
"wav2lip_inference", "checkpoints", "wav2lip_gan.pth"
|
|
|
|
|
|
),
|
|
nosmooth=False,
|
|
static=False,
|
|
):
|
|
self.checkpoint_path = checkpoint_path
|
|
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
self.static = static
|
|
self.nosmooth = nosmooth
|
|
|
|
def get_smoothened_boxes(self, boxes, T):
|
|
for i in range(len(boxes)):
|
|
if i + T > len(boxes):
|
|
window = boxes[len(boxes) - T :]
|
|
else:
|
|
window = boxes[i : i + T]
|
|
boxes[i] = np.mean(window, axis=0)
|
|
return boxes
|
|
|
|
def face_detect(self, images):
|
|
print("Detecting Faces")
|
|
|
|
face_cascade = cv2.CascadeClassifier(
|
|
os.path.join(
|
|
"wav2lip_inference",
|
|
"checkpoints",
|
|
"haarcascade_frontalface_default.xml",
|
|
)
|
|
)
|
|
pads = [0, 10, 0, 0]
|
|
results = []
|
|
pady1, pady2, padx1, padx2 = pads
|
|
|
|
for image in images:
|
|
|
|
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
faces = face_cascade.detectMultiScale(
|
|
gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)
|
|
)
|
|
|
|
if len(faces) > 0:
|
|
|
|
x, y, w, h = faces[0]
|
|
|
|
|
|
x1 = max(0, x - padx1)
|
|
x2 = min(image.shape[1], x + w + padx2)
|
|
y1 = max(0, y - pady1)
|
|
y2 = min(image.shape[0], y + h + pady2)
|
|
|
|
results.append([x1, y1, x2, y2])
|
|
else:
|
|
cv2.imwrite(
|
|
os.path.join("temp","faulty_frame.jpg"), image
|
|
)
|
|
raise ValueError("Face not detected! Ensure the image contains a face.")
|
|
|
|
boxes = np.array(results)
|
|
if not self.nosmooth:
|
|
boxes = self.get_smoothened_boxes(boxes, 5)
|
|
results = [
|
|
[image[y1:y2, x1:x2], (y1, y2, x1, x2)]
|
|
for image, (x1, y1, x2, y2) in zip(images, boxes)
|
|
]
|
|
|
|
return results
|
|
|
|
def datagen(self, frames, mels):
|
|
img_size = 96
|
|
box = [-1, -1, -1, -1]
|
|
wav2lip_batch_size = 128
|
|
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
|
|
|
|
if box[0] == -1:
|
|
if not self.static:
|
|
face_det_results = self.face_detect(
|
|
frames
|
|
)
|
|
else:
|
|
face_det_results = self.face_detect([frames[0]])
|
|
else:
|
|
print("Using the specified bounding box instead of face detection...")
|
|
y1, y2, x1, x2 = box
|
|
face_det_results = [[f[y1:y2, x1:x2], (y1, y2, x1, x2)] for f in frames]
|
|
|
|
for i, m in enumerate(mels):
|
|
idx = 0 if self.static else i % len(frames)
|
|
frame_to_save = frames[idx].copy()
|
|
face, coords = face_det_results[idx].copy()
|
|
|
|
face = cv2.resize(face, (img_size, img_size))
|
|
img_batch.append(face)
|
|
mel_batch.append(m)
|
|
frame_batch.append(frame_to_save)
|
|
coords_batch.append(coords)
|
|
|
|
if len(img_batch) >= wav2lip_batch_size:
|
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
|
|
|
img_masked = img_batch.copy()
|
|
img_masked[:, img_size // 2 :] = 0
|
|
|
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.0
|
|
mel_batch = np.reshape(
|
|
mel_batch,
|
|
[len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1],
|
|
)
|
|
|
|
yield img_batch, mel_batch, frame_batch, coords_batch
|
|
img_batch, mel_batch, frame_batch, coords_batch = [], [], [], []
|
|
|
|
if len(img_batch) > 0:
|
|
img_batch, mel_batch = np.asarray(img_batch), np.asarray(mel_batch)
|
|
|
|
img_masked = img_batch.copy()
|
|
img_masked[:, img_size // 2 :] = 0
|
|
|
|
img_batch = np.concatenate((img_masked, img_batch), axis=3) / 255.0
|
|
mel_batch = np.reshape(
|
|
mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1]
|
|
)
|
|
|
|
yield img_batch, mel_batch, frame_batch, coords_batch
|
|
|
|
def _load(self, checkpoint_path):
|
|
if self.device == "cuda":
|
|
checkpoint = torch.load(checkpoint_path)
|
|
else:
|
|
checkpoint = torch.load(
|
|
checkpoint_path, map_location=lambda storage, loc: storage
|
|
)
|
|
return checkpoint
|
|
|
|
def load_model(self, path):
|
|
model = Wav2Lip()
|
|
print("Load checkpoint from: {}".format(path))
|
|
checkpoint = self._load(path)
|
|
s = checkpoint["state_dict"]
|
|
new_s = {}
|
|
for k, v in s.items():
|
|
new_s[k.replace("module.", "")] = v
|
|
model.load_state_dict(new_s)
|
|
|
|
model = model.to(self.device)
|
|
return model.eval()
|
|
|
|
def run(
|
|
self,
|
|
face,
|
|
audio_file,
|
|
output_path="output.mp4",
|
|
resize_factor=4,
|
|
rotate=False,
|
|
crop=[0, -1, 0, -1],
|
|
fps=25,
|
|
mel_step_size=16,
|
|
wav2lip_batch_size=128,
|
|
):
|
|
if not os.path.isfile(face):
|
|
raise ValueError("--face argument must be a valid path to video/image file")
|
|
|
|
elif face.split(".")[1] in ["jpg", "png", "jpeg"]:
|
|
full_frames = [cv2.imread(face)]
|
|
fps = fps
|
|
|
|
else:
|
|
video_stream = cv2.VideoCapture(face)
|
|
fps = video_stream.get(cv2.CAP_PROP_FPS)
|
|
|
|
print("Reading video frames...")
|
|
|
|
full_frames = []
|
|
while 1:
|
|
still_reading, frame = video_stream.read()
|
|
if not still_reading:
|
|
video_stream.release()
|
|
break
|
|
if resize_factor > 1:
|
|
frame = cv2.resize(
|
|
frame,
|
|
(
|
|
frame.shape[1] // resize_factor,
|
|
frame.shape[0] // resize_factor,
|
|
),
|
|
)
|
|
|
|
if rotate:
|
|
frame = cv2.rotate(frame, cv2.cv2.ROTATE_90_CLOCKWISE)
|
|
|
|
y1, y2, x1, x2 = crop
|
|
if x2 == -1:
|
|
x2 = frame.shape[1]
|
|
if y2 == -1:
|
|
y2 = frame.shape[0]
|
|
|
|
frame = frame[y1:y2, x1:x2]
|
|
|
|
full_frames.append(frame)
|
|
|
|
print("Number of frames available for inference: " + str(len(full_frames)))
|
|
|
|
if not audio_file.endswith(".wav"):
|
|
print("Extracting raw audio_files...")
|
|
command = "ffmpeg -y -i {} -strict -2 {}".format(
|
|
audio_file, f"{os.path.join('temp','temp.wav')}"
|
|
)
|
|
|
|
subprocess.call(command, shell=True)
|
|
audio_file = os.path.join("temp", "temp.wav")
|
|
|
|
wav = audio.load_wav(audio_file, 16000)
|
|
mel = audio.melspectrogram(wav)
|
|
print(mel.shape)
|
|
|
|
if np.isnan(mel.reshape(-1)).sum() > 0:
|
|
raise ValueError(
|
|
"Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again"
|
|
)
|
|
|
|
mel_chunks = []
|
|
mel_idx_multiplier = 80.0 / fps
|
|
i = 0
|
|
while 1:
|
|
start_idx = int(i * mel_idx_multiplier)
|
|
if start_idx + mel_step_size > len(mel[0]):
|
|
mel_chunks.append(mel[:, len(mel[0]) - mel_step_size :])
|
|
break
|
|
mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size])
|
|
i += 1
|
|
|
|
print("Length of mel chunks: {}".format(len(mel_chunks)))
|
|
|
|
full_frames = full_frames[: len(mel_chunks)]
|
|
|
|
print("Full Frames before gen : ", len(full_frames))
|
|
|
|
batch_size = wav2lip_batch_size
|
|
gen = self.datagen(full_frames.copy(), mel_chunks)
|
|
|
|
for i, (img_batch, mel_batch, frames, coords) in enumerate(
|
|
tqdm(gen, total=int(np.ceil(float(len(mel_chunks)) / batch_size)))
|
|
):
|
|
if i == 0:
|
|
model = self.load_model(self.checkpoint_path)
|
|
print("Model loaded")
|
|
generated_temp_video_path = os.path.join(
|
|
"temp",
|
|
f"{datetime.now().strftime('%Y_%m_%d_%H_%M_%S')}_result.avi",
|
|
)
|
|
frame_h, frame_w = full_frames[0].shape[:-1]
|
|
out = cv2.VideoWriter(
|
|
generated_temp_video_path,
|
|
cv2.VideoWriter_fourcc(*"DIVX"),
|
|
fps,
|
|
(frame_w, frame_h),
|
|
)
|
|
|
|
img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to(
|
|
self.device
|
|
)
|
|
mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to(
|
|
self.device
|
|
)
|
|
|
|
with torch.no_grad():
|
|
pred = model(mel_batch, img_batch)
|
|
|
|
pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.0
|
|
|
|
for p, f, c in zip(pred, frames, coords):
|
|
y1, y2, x1, x2 = c
|
|
p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1))
|
|
|
|
f[y1:y2, x1:x2] = p
|
|
out.write(f)
|
|
|
|
out.release()
|
|
|
|
|
|
video_clip = VideoFileClip(generated_temp_video_path)
|
|
audio_clip = AudioFileClip(audio_file)
|
|
|
|
|
|
video_clip = video_clip.set_audio(audio_clip)
|
|
|
|
|
|
video_clip.write_videofile(output_path, codec="libx264", audio_codec="aac")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
processor = Processor()
|
|
processor.run("image_path", "audio_path")
|
|
|