File size: 1,893 Bytes
f93588c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db194ef
f93588c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
base_model: syssec-utd/py311-pylingual-v1-mlm
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: py311-pylingual-v1-segmenter
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# py311-pylingual-v1-segmenter

This model is a fine-tuned version of [syssec-utd/py311-pylingual-v1-mlm](https://huggingface.co/syssec-utd/py311-pylingual-v1-mlm) on the syssec-utd/segmentation-py311-pylingual-v1-tokenized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0046
- Precision: 0.9958
- Recall: 0.9937
- F1: 0.9948
- Accuracy: 0.9983

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0049        | 1.0   | 163974 | 0.0038          | 0.9964    | 0.9951 | 0.9958 | 0.9986   |
| 0.0029        | 2.0   | 327948 | 0.0046          | 0.9958    | 0.9937 | 0.9948 | 0.9983   |


### Framework versions

- Transformers 4.48.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.21.0