Upload model
Browse files- config.json +4 -0
- config.py +19 -0
- model.py +79 -0
config.json
CHANGED
@@ -2,6 +2,10 @@
|
|
2 |
"architectures": [
|
3 |
"DSIRModel"
|
4 |
],
|
|
|
|
|
|
|
|
|
5 |
"laplace_smoothing": 0.0,
|
6 |
"model_type": "dsir",
|
7 |
"n": 2,
|
|
|
2 |
"architectures": [
|
3 |
"DSIRModel"
|
4 |
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "config.DSIRConfig",
|
7 |
+
"AutoModel": "model.DSIRModel"
|
8 |
+
},
|
9 |
"laplace_smoothing": 0.0,
|
10 |
"model_type": "dsir",
|
11 |
"n": 2,
|
config.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Literal
|
2 |
+
|
3 |
+
from transformers import PretrainedConfig
|
4 |
+
|
5 |
+
|
6 |
+
class DSIRConfig(PretrainedConfig):
|
7 |
+
model_type = "dsir"
|
8 |
+
is_composition = False
|
9 |
+
|
10 |
+
def __init__(
|
11 |
+
self,
|
12 |
+
n: int = 2,
|
13 |
+
num_buckets: int = 10_000,
|
14 |
+
laplace_smoothing: float = 1e-4,
|
15 |
+
):
|
16 |
+
super().__init__()
|
17 |
+
self.n = n
|
18 |
+
self.num_buckets = num_buckets
|
19 |
+
self.laplace_smoothing = laplace_smoothing
|
model.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import hashlib
|
3 |
+
from collections.abc import Iterator, Sequence
|
4 |
+
from multiprocessing import Pool
|
5 |
+
|
6 |
+
import nltk
|
7 |
+
import torch
|
8 |
+
from torch import nn
|
9 |
+
from transformers import PreTrainedModel
|
10 |
+
|
11 |
+
from .config import DSIRConfig
|
12 |
+
|
13 |
+
|
14 |
+
def _hash_buckets(text: str, num_buckets: int) -> int:
|
15 |
+
return int(hashlib.sha256(text.encode("utf-8")).hexdigest(), 16) % num_buckets
|
16 |
+
|
17 |
+
|
18 |
+
def get_ngram_count(tokens: Sequence[str], n: int, num_buckets: int):
|
19 |
+
counts = torch.zeros(num_buckets, dtype=torch.float32)
|
20 |
+
|
21 |
+
for w in tokens:
|
22 |
+
counts[_hash_buckets(w, num_buckets)] += 1
|
23 |
+
|
24 |
+
for i in range(2, n + 1):
|
25 |
+
for ngram in list(nltk.ngrams(tokens, i)):
|
26 |
+
ngram = " ".join(ngram)
|
27 |
+
counts[_hash_buckets(ngram, num_buckets)] += 1
|
28 |
+
|
29 |
+
return counts
|
30 |
+
|
31 |
+
|
32 |
+
# def kl_divergence(p: torch.Tensor, q: torch.Tensor) -> torch.Tensor:
|
33 |
+
# # To avoid division by zero
|
34 |
+
# p = p + 1e-8
|
35 |
+
# q = q + 1e-8
|
36 |
+
# return (p * (p / q).log()).sum()
|
37 |
+
|
38 |
+
|
39 |
+
class DSIRModel(PreTrainedModel):
|
40 |
+
config_class = DSIRConfig
|
41 |
+
|
42 |
+
def __init__(self, config: DSIRConfig):
|
43 |
+
super().__init__(config)
|
44 |
+
|
45 |
+
self.prob_dist = nn.Parameter(torch.zeros(config.num_buckets, dtype=torch.float32))
|
46 |
+
self.proportions = None
|
47 |
+
self.raw_dist = None
|
48 |
+
self.log_diff_dist = None
|
49 |
+
|
50 |
+
def fit_raw_dataset(self, dataset: Iterator[Sequence[str]], num_proc: None | int = None):
|
51 |
+
num_proc = num_proc or os.cpu_count() or 1
|
52 |
+
with Pool(num_proc) as pool:
|
53 |
+
ngram_counts = pool.starmap(
|
54 |
+
get_ngram_count,
|
55 |
+
[(tokens, self.config.n, self.config.num_buckets) for tokens in dataset],
|
56 |
+
)
|
57 |
+
raw_dist = torch.stack(ngram_counts).sum(dim=0)
|
58 |
+
|
59 |
+
self.raw_dist = raw_dist / raw_dist.sum()
|
60 |
+
self.log_diff_dist = torch.log(self.raw_dist + 1e-8) - torch.log(self.prob_dist + 1e-8)
|
61 |
+
|
62 |
+
def compute_single_prob_dist(self, tokens: Sequence[str]) -> torch.Tensor:
|
63 |
+
ngram_count = get_ngram_count(tokens, self.config.n, self.config.num_buckets)
|
64 |
+
return ngram_count
|
65 |
+
|
66 |
+
def _normalize_prob_dist(self, tokens: Sequence[str]) -> torch.Tensor:
|
67 |
+
ngram_count = self.compute_single_prob_dist(tokens)
|
68 |
+
return ngram_count / ngram_count.sum()
|
69 |
+
|
70 |
+
def compute_importance_score(self, tokens: Sequence[str]) -> torch.Tensor:
|
71 |
+
prob_dists = self._normalize_prob_dist(tokens)
|
72 |
+
return prob_dists @ self.log_diff_dist
|
73 |
+
|
74 |
+
def forward(self, tokens: Sequence[Sequence[str]]) -> dict[str, torch.Tensor]:
|
75 |
+
prob_dists = [self._normalize_prob_dist(t) for t in tokens]
|
76 |
+
prob_dists = torch.stack(prob_dists)
|
77 |
+
weight = prob_dists @ self.log_diff_dist
|
78 |
+
|
79 |
+
return {"weight": weight, "prob_dists": prob_dists}
|