syubraj commited on
Commit
70099c0
1 Parent(s): 0b5f404

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,568 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - dataset_size:1K<n<10K
9
+ - loss:CosineSimilarityLoss
10
+ base_model: Rajan/NepaliBERT
11
+ metrics:
12
+ - pearson_cosine
13
+ - spearman_cosine
14
+ - pearson_manhattan
15
+ - spearman_manhattan
16
+ - pearson_euclidean
17
+ - spearman_euclidean
18
+ - pearson_dot
19
+ - spearman_dot
20
+ - pearson_max
21
+ - spearman_max
22
+ widget:
23
+ - source_sentence: अघिल्लो वर्ष देखि।
24
+ sentences:
25
+ - अघिल्लो वर्ष देखि .।
26
+ - एउटी महिला बन्दुक हान्दै छिन्।
27
+ - हिउँमा हिंडिरहेको सेतो कुकुर।
28
+ - source_sentence: यो मोलोच दृश्य हो।
29
+ sentences:
30
+ - वास्तवमा, यो केवल डच हो।
31
+ - एउटा मानिस डोरीमा झुलिरहेको छ।
32
+ - रातो झोला लिएर सडकमा उभिएकी केटी।
33
+ - source_sentence: दमास्कसमा रुसीहरू!
34
+ sentences:
35
+ - रुसीहरू दमस्कसमा किन छन्?
36
+ - कसैले मिर्चको बीउ निकाल्दै छ।
37
+ - एकजना मानिस साइकल चलाउँदै छन्।
38
+ - source_sentence: रेल ट्र्याकमा रेल।
39
+ sentences:
40
+ - लामो रेल रेल ट्र्याकमा छ।
41
+ - एउटी महिला सिडु चढिरहेकी छिन्।
42
+ - एक व्यक्ति सडकमा हिर्किरहेको छ।
43
+ - source_sentence: रातो, डबल डेकर बस।
44
+ sentences:
45
+ - रातो डबल डेकर बस।
46
+ - दुई कालो कुकुर हिउँमा हिंड्दै।
47
+ - एउटी महिला मासु फ्राइरहेकी छिन्।
48
+ pipeline_tag: sentence-similarity
49
+ model-index:
50
+ - name: SentenceTransformer based on Rajan/NepaliBERT
51
+ results:
52
+ - task:
53
+ type: semantic-similarity
54
+ name: Semantic Similarity
55
+ dataset:
56
+ name: stsb dev nepali
57
+ type: stsb-dev-nepali
58
+ metrics:
59
+ - type: pearson_cosine
60
+ value: 0.6971387543395983
61
+ name: Pearson Cosine
62
+ - type: spearman_cosine
63
+ value: 0.6623150295431888
64
+ name: Spearman Cosine
65
+ - type: pearson_manhattan
66
+ value: 0.6332077130918778
67
+ name: Pearson Manhattan
68
+ - type: spearman_manhattan
69
+ value: 0.6078651194262178
70
+ name: Spearman Manhattan
71
+ - type: pearson_euclidean
72
+ value: 0.6339817618698202
73
+ name: Pearson Euclidean
74
+ - type: spearman_euclidean
75
+ value: 0.6090065238762821
76
+ name: Spearman Euclidean
77
+ - type: pearson_dot
78
+ value: 0.4848273995348276
79
+ name: Pearson Dot
80
+ - type: spearman_dot
81
+ value: 0.5306425402414711
82
+ name: Spearman Dot
83
+ - type: pearson_max
84
+ value: 0.6971387543395983
85
+ name: Pearson Max
86
+ - type: spearman_max
87
+ value: 0.6623150295431888
88
+ name: Spearman Max
89
+ ---
90
+
91
+ # SentenceTransformer based on Rajan/NepaliBERT
92
+
93
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Rajan/NepaliBERT](https://huggingface.co/Rajan/NepaliBERT). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
94
+
95
+ ## Model Details
96
+
97
+ ### Model Description
98
+ - **Model Type:** Sentence Transformer
99
+ - **Base model:** [Rajan/NepaliBERT](https://huggingface.co/Rajan/NepaliBERT) <!-- at revision 996c3b86b779a63225b473221678447c9d9185d0 -->
100
+ - **Maximum Sequence Length:** 512 tokens
101
+ - **Output Dimensionality:** 768 tokens
102
+ - **Similarity Function:** Cosine Similarity
103
+ <!-- - **Training Dataset:** Unknown -->
104
+ <!-- - **Language:** Unknown -->
105
+ <!-- - **License:** Unknown -->
106
+
107
+ ### Model Sources
108
+
109
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
110
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
111
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
112
+
113
+ ### Full Model Architecture
114
+
115
+ ```
116
+ SentenceTransformer(
117
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
118
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
119
+ )
120
+ ```
121
+
122
+ ## Usage
123
+
124
+ ### Direct Usage (Sentence Transformers)
125
+
126
+ First install the Sentence Transformers library:
127
+
128
+ ```bash
129
+ pip install -U sentence-transformers
130
+ ```
131
+
132
+ Then you can load this model and run inference.
133
+ ```python
134
+ from sentence_transformers import SentenceTransformer
135
+
136
+ # Download from the 🤗 Hub
137
+ model = SentenceTransformer("syubraj/sentenceTransformer_nepali_new")
138
+ # Run inference
139
+ sentences = [
140
+ 'रातो, डबल डेकर बस।',
141
+ 'रातो डबल डेकर बस।',
142
+ 'दुई कालो कुकुर हिउँमा हिंड्दै।',
143
+ ]
144
+ embeddings = model.encode(sentences)
145
+ print(embeddings.shape)
146
+ # [3, 768]
147
+
148
+ # Get the similarity scores for the embeddings
149
+ similarities = model.similarity(embeddings, embeddings)
150
+ print(similarities.shape)
151
+ # [3, 3]
152
+ ```
153
+
154
+ <!--
155
+ ### Direct Usage (Transformers)
156
+
157
+ <details><summary>Click to see the direct usage in Transformers</summary>
158
+
159
+ </details>
160
+ -->
161
+
162
+ <!--
163
+ ### Downstream Usage (Sentence Transformers)
164
+
165
+ You can finetune this model on your own dataset.
166
+
167
+ <details><summary>Click to expand</summary>
168
+
169
+ </details>
170
+ -->
171
+
172
+ <!--
173
+ ### Out-of-Scope Use
174
+
175
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
176
+ -->
177
+
178
+ ## Evaluation
179
+
180
+ ### Metrics
181
+
182
+ #### Semantic Similarity
183
+ * Dataset: `stsb-dev-nepali`
184
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
185
+
186
+ | Metric | Value |
187
+ |:-------------------|:-----------|
188
+ | pearson_cosine | 0.6971 |
189
+ | spearman_cosine | 0.6623 |
190
+ | pearson_manhattan | 0.6332 |
191
+ | spearman_manhattan | 0.6079 |
192
+ | pearson_euclidean | 0.634 |
193
+ | spearman_euclidean | 0.609 |
194
+ | pearson_dot | 0.4848 |
195
+ | spearman_dot | 0.5306 |
196
+ | pearson_max | 0.6971 |
197
+ | **spearman_max** | **0.6623** |
198
+
199
+ <!--
200
+ ## Bias, Risks and Limitations
201
+
202
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
203
+ -->
204
+
205
+ <!--
206
+ ### Recommendations
207
+
208
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
209
+ -->
210
+
211
+ ## Training Details
212
+
213
+ ### Training Dataset
214
+
215
+ #### Unnamed Dataset
216
+
217
+
218
+ * Size: 4,599 training samples
219
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
220
+ * Approximate statistics based on the first 1000 samples:
221
+ | | sentence_0 | sentence_1 | label |
222
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
223
+ | type | string | string | float |
224
+ | details | <ul><li>min: 6 tokens</li><li>mean: 19.5 tokens</li><li>max: 81 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 19.43 tokens</li><li>max: 75 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
225
+ * Samples:
226
+ | sentence_0 | sentence_1 | label |
227
+ |:-------------------------------------------------------------------------|:---------------------------------------------------------------|:--------------------------------|
228
+ | <code>एक व्यक्ति प्याज काट्दै छ।</code> | <code>एउटा बिरालो शौचालयमा पपिङ गर्दैछ।</code> | <code>0.0</code> |
229
+ | <code>क्यानडाको तेल रेल विस्फोटमा थप मृत्यु हुने अपेक्षा गरिएको छ</code> | <code>क्यानडामा रेल दुर्घटनामा पाँच जनाको मृत्यु भएको छ</code> | <code>0.5599999904632569</code> |
230
+ | <code>एउटी महिला झिंगा माझ्दै छिन्।</code> | <code>एउटी महिला केही झिंगा माझ्दै।</code> | <code>1.0</code> |
231
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
232
+ ```json
233
+ {
234
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
235
+ }
236
+ ```
237
+
238
+ ### Training Hyperparameters
239
+ #### Non-Default Hyperparameters
240
+
241
+ - `eval_strategy`: steps
242
+ - `per_device_train_batch_size`: 16
243
+ - `per_device_eval_batch_size`: 16
244
+ - `num_train_epochs`: 100
245
+ - `multi_dataset_batch_sampler`: round_robin
246
+
247
+ #### All Hyperparameters
248
+ <details><summary>Click to expand</summary>
249
+
250
+ - `overwrite_output_dir`: False
251
+ - `do_predict`: False
252
+ - `eval_strategy`: steps
253
+ - `prediction_loss_only`: True
254
+ - `per_device_train_batch_size`: 16
255
+ - `per_device_eval_batch_size`: 16
256
+ - `per_gpu_train_batch_size`: None
257
+ - `per_gpu_eval_batch_size`: None
258
+ - `gradient_accumulation_steps`: 1
259
+ - `eval_accumulation_steps`: None
260
+ - `learning_rate`: 5e-05
261
+ - `weight_decay`: 0.0
262
+ - `adam_beta1`: 0.9
263
+ - `adam_beta2`: 0.999
264
+ - `adam_epsilon`: 1e-08
265
+ - `max_grad_norm`: 1
266
+ - `num_train_epochs`: 100
267
+ - `max_steps`: -1
268
+ - `lr_scheduler_type`: linear
269
+ - `lr_scheduler_kwargs`: {}
270
+ - `warmup_ratio`: 0.0
271
+ - `warmup_steps`: 0
272
+ - `log_level`: passive
273
+ - `log_level_replica`: warning
274
+ - `log_on_each_node`: True
275
+ - `logging_nan_inf_filter`: True
276
+ - `save_safetensors`: True
277
+ - `save_on_each_node`: False
278
+ - `save_only_model`: False
279
+ - `restore_callback_states_from_checkpoint`: False
280
+ - `no_cuda`: False
281
+ - `use_cpu`: False
282
+ - `use_mps_device`: False
283
+ - `seed`: 42
284
+ - `data_seed`: None
285
+ - `jit_mode_eval`: False
286
+ - `use_ipex`: False
287
+ - `bf16`: False
288
+ - `fp16`: False
289
+ - `fp16_opt_level`: O1
290
+ - `half_precision_backend`: auto
291
+ - `bf16_full_eval`: False
292
+ - `fp16_full_eval`: False
293
+ - `tf32`: None
294
+ - `local_rank`: 0
295
+ - `ddp_backend`: None
296
+ - `tpu_num_cores`: None
297
+ - `tpu_metrics_debug`: False
298
+ - `debug`: []
299
+ - `dataloader_drop_last`: False
300
+ - `dataloader_num_workers`: 0
301
+ - `dataloader_prefetch_factor`: None
302
+ - `past_index`: -1
303
+ - `disable_tqdm`: False
304
+ - `remove_unused_columns`: True
305
+ - `label_names`: None
306
+ - `load_best_model_at_end`: False
307
+ - `ignore_data_skip`: False
308
+ - `fsdp`: []
309
+ - `fsdp_min_num_params`: 0
310
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
311
+ - `fsdp_transformer_layer_cls_to_wrap`: None
312
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
313
+ - `deepspeed`: None
314
+ - `label_smoothing_factor`: 0.0
315
+ - `optim`: adamw_torch
316
+ - `optim_args`: None
317
+ - `adafactor`: False
318
+ - `group_by_length`: False
319
+ - `length_column_name`: length
320
+ - `ddp_find_unused_parameters`: None
321
+ - `ddp_bucket_cap_mb`: None
322
+ - `ddp_broadcast_buffers`: False
323
+ - `dataloader_pin_memory`: True
324
+ - `dataloader_persistent_workers`: False
325
+ - `skip_memory_metrics`: True
326
+ - `use_legacy_prediction_loop`: False
327
+ - `push_to_hub`: False
328
+ - `resume_from_checkpoint`: None
329
+ - `hub_model_id`: None
330
+ - `hub_strategy`: every_save
331
+ - `hub_private_repo`: False
332
+ - `hub_always_push`: False
333
+ - `gradient_checkpointing`: False
334
+ - `gradient_checkpointing_kwargs`: None
335
+ - `include_inputs_for_metrics`: False
336
+ - `eval_do_concat_batches`: True
337
+ - `fp16_backend`: auto
338
+ - `push_to_hub_model_id`: None
339
+ - `push_to_hub_organization`: None
340
+ - `mp_parameters`:
341
+ - `auto_find_batch_size`: False
342
+ - `full_determinism`: False
343
+ - `torchdynamo`: None
344
+ - `ray_scope`: last
345
+ - `ddp_timeout`: 1800
346
+ - `torch_compile`: False
347
+ - `torch_compile_backend`: None
348
+ - `torch_compile_mode`: None
349
+ - `dispatch_batches`: None
350
+ - `split_batches`: None
351
+ - `include_tokens_per_second`: False
352
+ - `include_num_input_tokens_seen`: False
353
+ - `neftune_noise_alpha`: None
354
+ - `optim_target_modules`: None
355
+ - `batch_eval_metrics`: False
356
+ - `batch_sampler`: batch_sampler
357
+ - `multi_dataset_batch_sampler`: round_robin
358
+
359
+ </details>
360
+
361
+ ### Training Logs
362
+ <details><summary>Click to expand</summary>
363
+
364
+ | Epoch | Step | Training Loss | stsb-dev-nepali_spearman_max |
365
+ |:-------:|:-----:|:-------------:|:----------------------------:|
366
+ | 1.0 | 288 | - | 0.5355 |
367
+ | 1.7361 | 500 | 0.0723 | - |
368
+ | 2.0 | 576 | - | 0.5794 |
369
+ | 3.0 | 864 | - | 0.6108 |
370
+ | 3.4722 | 1000 | 0.047 | 0.6147 |
371
+ | 4.0 | 1152 | - | 0.6259 |
372
+ | 5.0 | 1440 | - | 0.6356 |
373
+ | 5.2083 | 1500 | 0.034 | - |
374
+ | 6.0 | 1728 | - | 0.6329 |
375
+ | 6.9444 | 2000 | 0.0217 | 0.6375 |
376
+ | 7.0 | 2016 | - | 0.6382 |
377
+ | 8.0 | 2304 | - | 0.6468 |
378
+ | 8.6806 | 2500 | 0.0137 | - |
379
+ | 9.0 | 2592 | - | 0.6348 |
380
+ | 10.0 | 2880 | - | 0.6332 |
381
+ | 10.4167 | 3000 | 0.0102 | 0.6427 |
382
+ | 11.0 | 3168 | - | 0.6370 |
383
+ | 12.0 | 3456 | - | 0.6515 |
384
+ | 12.1528 | 3500 | 0.0084 | - |
385
+ | 13.0 | 3744 | - | 0.6546 |
386
+ | 13.8889 | 4000 | 0.0069 | 0.6400 |
387
+ | 14.0 | 4032 | - | 0.6610 |
388
+ | 15.0 | 4320 | - | 0.6495 |
389
+ | 15.625 | 4500 | 0.006 | - |
390
+ | 16.0 | 4608 | - | 0.6574 |
391
+ | 17.0 | 4896 | - | 0.6486 |
392
+ | 17.3611 | 5000 | 0.0053 | 0.6589 |
393
+ | 18.0 | 5184 | - | 0.6592 |
394
+ | 19.0 | 5472 | - | 0.6488 |
395
+ | 19.0972 | 5500 | 0.0047 | - |
396
+ | 20.0 | 5760 | - | 0.6436 |
397
+ | 20.8333 | 6000 | 0.0044 | 0.6576 |
398
+ | 21.0 | 6048 | - | 0.6515 |
399
+ | 22.0 | 6336 | - | 0.6541 |
400
+ | 22.5694 | 6500 | 0.0041 | - |
401
+ | 23.0 | 6624 | - | 0.6549 |
402
+ | 24.0 | 6912 | - | 0.6571 |
403
+ | 24.3056 | 7000 | 0.0037 | 0.6603 |
404
+ | 25.0 | 7200 | - | 0.6699 |
405
+ | 26.0 | 7488 | - | 0.6653 |
406
+ | 26.0417 | 7500 | 0.0037 | - |
407
+ | 27.0 | 7776 | - | 0.6609 |
408
+ | 27.7778 | 8000 | 0.0033 | 0.6578 |
409
+ | 28.0 | 8064 | - | 0.6606 |
410
+ | 29.0 | 8352 | - | 0.6614 |
411
+ | 29.5139 | 8500 | 0.0031 | - |
412
+ | 30.0 | 8640 | - | 0.6579 |
413
+ | 31.0 | 8928 | - | 0.6688 |
414
+ | 31.25 | 9000 | 0.0028 | 0.6650 |
415
+ | 32.0 | 9216 | - | 0.6639 |
416
+ | 32.9861 | 9500 | 0.0027 | - |
417
+ | 33.0 | 9504 | - | 0.6624 |
418
+ | 34.0 | 9792 | - | 0.6646 |
419
+ | 34.7222 | 10000 | 0.0025 | 0.6530 |
420
+ | 35.0 | 10080 | - | 0.6587 |
421
+ | 36.0 | 10368 | - | 0.6671 |
422
+ | 36.4583 | 10500 | 0.0025 | - |
423
+ | 37.0 | 10656 | - | 0.6614 |
424
+ | 38.0 | 10944 | - | 0.6602 |
425
+ | 38.1944 | 11000 | 0.0024 | 0.6576 |
426
+ | 39.0 | 11232 | - | 0.6665 |
427
+ | 39.9306 | 11500 | 0.0023 | - |
428
+ | 40.0 | 11520 | - | 0.6663 |
429
+ | 41.0 | 11808 | - | 0.6734 |
430
+ | 41.6667 | 12000 | 0.0021 | 0.6633 |
431
+ | 42.0 | 12096 | - | 0.6667 |
432
+ | 43.0 | 12384 | - | 0.6679 |
433
+ | 43.4028 | 12500 | 0.002 | - |
434
+ | 44.0 | 12672 | - | 0.6701 |
435
+ | 45.0 | 12960 | - | 0.6650 |
436
+ | 45.1389 | 13000 | 0.0019 | 0.6680 |
437
+ | 46.0 | 13248 | - | 0.6631 |
438
+ | 46.875 | 13500 | 0.0018 | - |
439
+ | 47.0 | 13536 | - | 0.6643 |
440
+ | 48.0 | 13824 | - | 0.6631 |
441
+ | 48.6111 | 14000 | 0.0017 | 0.6648 |
442
+ | 49.0 | 14112 | - | 0.6648 |
443
+ | 50.0 | 14400 | - | 0.6619 |
444
+ | 50.3472 | 14500 | 0.0017 | - |
445
+ | 51.0 | 14688 | - | 0.6633 |
446
+ | 52.0 | 14976 | - | 0.6622 |
447
+ | 52.0833 | 15000 | 0.0016 | 0.6612 |
448
+ | 53.0 | 15264 | - | 0.6670 |
449
+ | 53.8194 | 15500 | 0.0015 | - |
450
+ | 54.0 | 15552 | - | 0.6618 |
451
+ | 55.0 | 15840 | - | 0.6641 |
452
+ | 55.5556 | 16000 | 0.0015 | 0.6617 |
453
+ | 56.0 | 16128 | - | 0.6669 |
454
+ | 57.0 | 16416 | - | 0.6645 |
455
+ | 57.2917 | 16500 | 0.0014 | - |
456
+ | 58.0 | 16704 | - | 0.6642 |
457
+ | 59.0 | 16992 | - | 0.6579 |
458
+ | 59.0278 | 17000 | 0.0013 | 0.6592 |
459
+ | 60.0 | 17280 | - | 0.6589 |
460
+ | 60.7639 | 17500 | 0.0014 | - |
461
+ | 61.0 | 17568 | - | 0.6685 |
462
+ | 62.0 | 17856 | - | 0.6673 |
463
+ | 62.5 | 18000 | 0.0012 | 0.6669 |
464
+ | 63.0 | 18144 | - | 0.6665 |
465
+ | 64.0 | 18432 | - | 0.6626 |
466
+ | 64.2361 | 18500 | 0.0012 | - |
467
+ | 65.0 | 18720 | - | 0.6619 |
468
+ | 65.9722 | 19000 | 0.0012 | 0.6643 |
469
+ | 66.0 | 19008 | - | 0.6651 |
470
+ | 67.0 | 19296 | - | 0.6628 |
471
+ | 67.7083 | 19500 | 0.0011 | - |
472
+ | 68.0 | 19584 | - | 0.6658 |
473
+ | 69.0 | 19872 | - | 0.6615 |
474
+ | 69.4444 | 20000 | 0.0011 | 0.6627 |
475
+ | 70.0 | 20160 | - | 0.6657 |
476
+ | 71.0 | 20448 | - | 0.6663 |
477
+ | 71.1806 | 20500 | 0.0011 | - |
478
+ | 72.0 | 20736 | - | 0.6634 |
479
+ | 72.9167 | 21000 | 0.001 | 0.6649 |
480
+ | 73.0 | 21024 | - | 0.6632 |
481
+ | 74.0 | 21312 | - | 0.6658 |
482
+ | 74.6528 | 21500 | 0.001 | - |
483
+ | 75.0 | 21600 | - | 0.6639 |
484
+ | 76.0 | 21888 | - | 0.6601 |
485
+ | 76.3889 | 22000 | 0.001 | 0.6623 |
486
+ | 77.0 | 22176 | - | 0.6607 |
487
+ | 78.0 | 22464 | - | 0.6613 |
488
+ | 78.125 | 22500 | 0.0009 | - |
489
+ | 79.0 | 22752 | - | 0.6613 |
490
+ | 79.8611 | 23000 | 0.0009 | 0.6615 |
491
+ | 80.0 | 23040 | - | 0.6615 |
492
+ | 81.0 | 23328 | - | 0.6617 |
493
+ | 81.5972 | 23500 | 0.0008 | - |
494
+ | 82.0 | 23616 | - | 0.6604 |
495
+ | 83.0 | 23904 | - | 0.6605 |
496
+ | 83.3333 | 24000 | 0.0008 | 0.6602 |
497
+ | 84.0 | 24192 | - | 0.6628 |
498
+ | 85.0 | 24480 | - | 0.6603 |
499
+ | 85.0694 | 24500 | 0.0008 | - |
500
+ | 86.0 | 24768 | - | 0.6602 |
501
+ | 86.8056 | 25000 | 0.0008 | 0.6592 |
502
+ | 87.0 | 25056 | - | 0.6611 |
503
+ | 88.0 | 25344 | - | 0.6612 |
504
+ | 88.5417 | 25500 | 0.0008 | - |
505
+ | 89.0 | 25632 | - | 0.6607 |
506
+ | 90.0 | 25920 | - | 0.6598 |
507
+ | 90.2778 | 26000 | 0.0008 | 0.6607 |
508
+ | 91.0 | 26208 | - | 0.6615 |
509
+ | 92.0 | 26496 | - | 0.6615 |
510
+ | 92.0139 | 26500 | 0.0007 | - |
511
+ | 93.0 | 26784 | - | 0.6609 |
512
+ | 93.75 | 27000 | 0.0007 | 0.6607 |
513
+ | 94.0 | 27072 | - | 0.6612 |
514
+ | 95.0 | 27360 | - | 0.6624 |
515
+ | 95.4861 | 27500 | 0.0007 | - |
516
+ | 96.0 | 27648 | - | 0.6627 |
517
+ | 97.0 | 27936 | - | 0.6618 |
518
+ | 97.2222 | 28000 | 0.0007 | 0.6619 |
519
+ | 98.0 | 28224 | - | 0.6621 |
520
+ | 98.9583 | 28500 | 0.0007 | - |
521
+ | 99.0 | 28512 | - | 0.6623 |
522
+ | 100.0 | 28800 | - | 0.6623 |
523
+
524
+ </details>
525
+
526
+ ### Framework Versions
527
+ - Python: 3.10.13
528
+ - Sentence Transformers: 3.0.0
529
+ - Transformers: 4.41.2
530
+ - PyTorch: 2.1.2
531
+ - Accelerate: 0.30.1
532
+ - Datasets: 2.19.2
533
+ - Tokenizers: 0.19.1
534
+
535
+ ## Citation
536
+
537
+ ### BibTeX
538
+
539
+ #### Sentence Transformers
540
+ ```bibtex
541
+ @inproceedings{reimers-2019-sentence-bert,
542
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
543
+ author = "Reimers, Nils and Gurevych, Iryna",
544
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
545
+ month = "11",
546
+ year = "2019",
547
+ publisher = "Association for Computational Linguistics",
548
+ url = "https://arxiv.org/abs/1908.10084",
549
+ }
550
+ ```
551
+
552
+ <!--
553
+ ## Glossary
554
+
555
+ *Clearly define terms in order to be accessible across audiences.*
556
+ -->
557
+
558
+ <!--
559
+ ## Model Card Authors
560
+
561
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
562
+ -->
563
+
564
+ <!--
565
+ ## Model Card Contact
566
+
567
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
568
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Rajan/NepaliBERT",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 50000
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0",
4
+ "transformers": "4.41.2",
5
+ "pytorch": "2.1.2"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1067c8f2fe7b9c8e13cb5dbbbd9d643db0b81fb45b58bcf76709ff1273ee6b1f
3
+ size 327667976
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 1000000000000000019884624838656,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff