|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
|
|
class ExcitometerModel(nn.Module):
|
|
def __init__(self, num_classes=10):
|
|
super(ExcitometerModel, self).__init__()
|
|
|
|
|
|
self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1)
|
|
self.conv2 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding=1)
|
|
self.conv3 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=1, padding=1)
|
|
self.conv4 = nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, stride=1, padding=1)
|
|
|
|
self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
|
|
|
|
self.dropout = nn.Dropout(p=0.5)
|
|
|
|
self.fc1 = nn.Linear(128 * 8 * 8, 1024)
|
|
self.fc2 = nn.Linear(1024, 512)
|
|
self.fc3 = nn.Linear(512, num_classes)
|
|
|
|
self.batch_norm1 = nn.BatchNorm2d(16)
|
|
self.batch_norm2 = nn.BatchNorm2d(32)
|
|
self.batch_norm3 = nn.BatchNorm2d(64)
|
|
self.batch_norm4 = nn.BatchNorm2d(128)
|
|
|
|
def forward(self, x):
|
|
|
|
x = F.relu(self.batch_norm1(self.conv1(x)))
|
|
x = self.pool(F.relu(self.batch_norm2(self.conv2(x))))
|
|
x = F.relu(self.batch_norm3(self.conv3(x)))
|
|
x = self.pool(F.relu(self.batch_norm4(self.conv4(x))))
|
|
|
|
x = F.adaptive_avg_pool2d(x, (1, 1))
|
|
|
|
x = x.view(-1, 128)
|
|
|
|
x = F.relu(self.fc1(x))
|
|
x = self.dropout(x)
|
|
x = F.relu(self.fc2(x))
|
|
x = self.fc3(x)
|
|
|
|
return x
|
|
|
|
|
|
if __name__ == "__main__":
|
|
model = ExcitometerModel(num_classes=10)
|
|
print(model)
|
|
|
|
|
|
example_input = torch.randn(1, 1, 64, 64)
|
|
output = model(example_input)
|
|
print(output)
|
|
|