import os import torch from torch.utils.data import Dataset from utils import preprocess_single_file class ExcitometerDataset(Dataset): """ Custom Dataset for loading and preprocessing audio data for the ExcitometerModel. """ def __init__(self, data_dir, target_sample_rate=16000, target_length=16000, n_mfcc=13, transform=None): """ Args: data_dir (str): Directory with all the audio files. target_sample_rate (int): Desired sample rate for the audio. target_length (int): Desired length of the audio in samples. n_mfcc (int): Number of MFCC features to extract. transform (callable, optional): Optional transform to be applied on a sample. """ self.data_dir = data_dir self.target_sample_rate = target_sample_rate self.target_length = target_length self.n_mfcc = n_mfcc self.transform = transform self.file_names = [f for f in os.listdir(data_dir) if f.endswith('.wav')] def __len__(self): """ Returns the total number of samples in the dataset. """ return len(self.file_names) def __getitem__(self, idx): """ Retrieves and preprocesses the sample at the given index. Args: idx (int): Index of the sample to retrieve. Returns: sample (dict): A dictionary containing 'features' and 'label'. """ file_name = self.file_names[idx] file_path = os.path.join(self.data_dir, file_name) # Preprocess the audio file to extract features features = preprocess_single_file(file_path, self.target_sample_rate, self.target_length, self.n_mfcc) # Extract the label from the file name (assuming the label is part of the file name) label = self.extract_label(file_name) sample = {'features': features, 'label': label} if self.transform: sample = self.transform(sample) return sample def extract_label(self, file_name): """ Extract the label from the file name. Assumes the label is part of the file name. Args: file_name (str): The name of the audio file. Returns: label (int): The extracted label. """ # Example: Assume the file name is in the format 'class_label_123.wav' label_str = file_name.split('_')[1] label = int(label_str) # Convert label to an integer, or modify this based on your specific labeling scheme return label