update readme.md
Browse files
README.md
CHANGED
@@ -51,16 +51,16 @@ pip install torch transformers
|
|
51 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
52 |
|
53 |
model_name = "t83714/llama-3.1-8b-instruct-limo"
|
54 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
55 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
56 |
|
57 |
prompt = "How much is (2+5)x5/7"
|
58 |
|
59 |
# Tokenize the input
|
60 |
-
inputs = tokenizer(prompt, return_tensors="pt")
|
61 |
|
62 |
# Generate the output
|
63 |
-
output = model.generate(**inputs, max_length=
|
64 |
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
65 |
```
|
66 |
|
|
|
51 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
52 |
|
53 |
model_name = "t83714/llama-3.1-8b-instruct-limo"
|
54 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
|
55 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
56 |
|
57 |
prompt = "How much is (2+5)x5/7"
|
58 |
|
59 |
# Tokenize the input
|
60 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
61 |
|
62 |
# Generate the output
|
63 |
+
output = model.generate(**inputs, max_length=8000)
|
64 |
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
65 |
```
|
66 |
|