File size: 11,912 Bytes
2a26d3b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
"""
This logic is largely copied from the Hendrycks' MATH release (math_equivalence), and borrowed from:
- https://github.com/microsoft/ProphetNet/tree/master/CRITIC
- https://github.com/openai/prm800k
- https://github.com/microsoft/ToRA/blob/main/src/eval/grader.py
- https://github.com/deepseek-ai/DeepSeek-Math/blob/main/evaluation/eval/eval_utils.py
"""
import re
import regex
import multiprocessing
from math import isclose
from typing import Union
from collections import defaultdict
from sympy import simplify, N
from sympy.parsing.sympy_parser import parse_expr
from sympy.parsing.latex import parse_latex
from latex2sympy2 import latex2sympy
# from .parser import choice_answer_clean, strip_string
# from parser import choice_answer_clean
def choice_answer_clean(pred: str):
pred = pred.strip("\n").rstrip(".").rstrip("/").strip(" ").lstrip(":")
# Clean the answer based on the dataset
tmp = re.findall(r"\b(A|B|C|D|E)\b", pred.upper())
if tmp:
pred = tmp
else:
pred = [pred.strip().strip(".")]
pred = pred[-1]
# Remove the period at the end, again!
pred = pred.rstrip(".").rstrip("/")
return pred
def parse_digits(num):
num = regex.sub(",", "", str(num))
try:
return float(num)
except:
if num.endswith("%"):
num = num[:-1]
if num.endswith("\\"):
num = num[:-1]
try:
return float(num) / 100
except:
pass
return None
def is_digit(num):
# paired with parse_digits
return parse_digits(num) is not None
def str_to_pmatrix(input_str):
input_str = input_str.strip()
matrix_str = re.findall(r"\{.*,.*\}", input_str)
pmatrix_list = []
for m in matrix_str:
m = m.strip("{}")
pmatrix = r"\begin{pmatrix}" + m.replace(",", "\\") + r"\end{pmatrix}"
pmatrix_list.append(pmatrix)
return ", ".join(pmatrix_list)
def math_equal(
prediction: Union[bool, float, str],
reference: Union[float, str],
include_percentage: bool = True,
is_close: bool = True,
timeout: bool = False,
) -> bool:
"""
Exact match of math if and only if:
1. numerical equal: both can convert to float and are equal
2. symbolic equal: both can convert to sympy expression and are equal
"""
# print("Judge:", prediction, reference)
if prediction is None or reference is None:
return False
if str(prediction.strip().lower()) == str(reference.strip().lower()):
return True
if (
reference in ["A", "B", "C", "D", "E"]
and choice_answer_clean(prediction) == reference
):
return True
try: # 1. numerical equal
if is_digit(prediction) and is_digit(reference):
prediction = parse_digits(prediction)
reference = parse_digits(reference)
# number questions
if include_percentage:
gt_result = [reference / 100, reference, reference * 100]
else:
gt_result = [reference]
for item in gt_result:
try:
if is_close:
if numeric_equal(prediction, item):
return True
else:
if item == prediction:
return True
except Exception:
continue
return False
except:
pass
if not prediction and prediction not in [0, False]:
return False
# 2. symbolic equal
reference = str(reference).strip()
prediction = str(prediction).strip()
## pmatrix (amps)
if "pmatrix" in prediction and not "pmatrix" in reference:
reference = str_to_pmatrix(reference)
## deal with [], (), {}
pred_str, ref_str = prediction, reference
if (
prediction.startswith("[")
and prediction.endswith("]")
and not reference.startswith("(")
) or (
prediction.startswith("(")
and prediction.endswith(")")
and not reference.startswith("[")
):
pred_str = pred_str.strip("[]()")
ref_str = ref_str.strip("[]()")
for s in ["{", "}", "(", ")"]:
ref_str = ref_str.replace(s, "")
pred_str = pred_str.replace(s, "")
if pred_str.lower() == ref_str.lower():
return True
## [a, b] vs. [c, d], return a==c and b==d
if (
regex.match(r"(\(|\[).+(\)|\])", prediction) is not None
and regex.match(r"(\(|\[).+(\)|\])", reference) is not None
):
pred_parts = prediction[1:-1].split(",")
ref_parts = reference[1:-1].split(",")
if len(pred_parts) == len(ref_parts):
if all(
[
math_equal(
pred_parts[i], ref_parts[i], include_percentage, is_close
)
for i in range(len(pred_parts))
]
):
return True
if (
(
prediction.startswith("\\begin{pmatrix}")
or prediction.startswith("\\begin{bmatrix}")
)
and (
prediction.endswith("\\end{pmatrix}")
or prediction.endswith("\\end{bmatrix}")
)
and (
reference.startswith("\\begin{pmatrix}")
or reference.startswith("\\begin{bmatrix}")
)
and (
reference.endswith("\\end{pmatrix}") or reference.endswith("\\end{bmatrix}")
)
):
pred_lines = [
line.strip()
for line in prediction[
len("\\begin{pmatrix}") : -len("\\end{pmatrix}")
].split("\\\\")
if line.strip()
]
ref_lines = [
line.strip()
for line in reference[
len("\\begin{pmatrix}") : -len("\\end{pmatrix}")
].split("\\\\")
if line.strip()
]
matched = True
if len(pred_lines) == len(ref_lines):
for pred_line, ref_line in zip(pred_lines, ref_lines):
pred_parts = pred_line.split("&")
ref_parts = ref_line.split("&")
if len(pred_parts) == len(ref_parts):
if not all(
[
math_equal(
pred_parts[i],
ref_parts[i],
include_percentage,
is_close,
)
for i in range(len(pred_parts))
]
):
matched = False
break
else:
matched = False
if not matched:
break
else:
matched = False
if matched:
return True
if prediction.count("=") == 1 and reference.count("=") == 1:
pred = prediction.split("=")
pred = f"{pred[0].strip()} - ({pred[1].strip()})"
ref = reference.split("=")
ref = f"{ref[0].strip()} - ({ref[1].strip()})"
if symbolic_equal(pred, ref) or symbolic_equal(f"-({pred})", ref):
return True
elif (
prediction.count("=") == 1
and len(prediction.split("=")[0].strip()) <= 2
and "=" not in reference
):
if math_equal(
prediction.split("=")[1], reference, include_percentage, is_close
):
return True
elif (
reference.count("=") == 1
and len(reference.split("=")[0].strip()) <= 2
and "=" not in prediction
):
if math_equal(
prediction, reference.split("=")[1], include_percentage, is_close
):
return True
# symbolic equal with sympy
if timeout:
if call_with_timeout(symbolic_equal_process, prediction, reference):
return True
else:
if symbolic_equal(prediction, reference):
return True
return False
def math_equal_process(param):
return math_equal(param[-2], param[-1])
def numeric_equal(prediction: float, reference: float):
# Note that relative tolerance has significant impact
# on the result of the synthesized GSM-Hard dataset
# if reference.is_integer():
# return isclose(reference, round(prediction), abs_tol=1e-4)
# else:
# prediction = round(prediction, len(str(reference).split(".")[-1]))
return isclose(reference, prediction, rel_tol=1e-4)
def symbolic_equal(a, b):
def _parse(s):
for f in [parse_latex, parse_expr, latex2sympy]:
try:
return f(s.replace("\\\\", "\\"))
except:
try:
return f(s)
except:
pass
return s
a = _parse(a)
b = _parse(b)
# direct equal
try:
if str(a) == str(b) or a == b:
return True
except:
pass
# simplify equal
try:
if a.equals(b) or simplify(a - b) == 0:
return True
except:
pass
# equation equal
try:
if (abs(a.lhs - a.rhs)).equals(abs(b.lhs - b.rhs)):
return True
except:
pass
try:
if numeric_equal(float(N(a)), float(N(b))):
return True
except:
pass
# matrix
try:
# if a and b are matrix
if a.shape == b.shape:
_a = a.applyfunc(lambda x: round(x, 3))
_b = b.applyfunc(lambda x: round(x, 3))
if _a.equals(_b):
return True
except:
pass
return False
def symbolic_equal_process(a, b, output_queue):
result = symbolic_equal(a, b)
output_queue.put(result)
def call_with_timeout(func, *args, timeout=1, **kwargs):
output_queue = multiprocessing.Queue()
process_args = args + (output_queue,)
process = multiprocessing.Process(target=func, args=process_args, kwargs=kwargs)
process.start()
process.join(timeout)
if process.is_alive():
process.terminate()
process.join()
return False
return output_queue.get()
def _test_math_equal():
# print(math_equal("0.0833333333333333", "\\frac{1}{12}"))
# print(math_equal("(1,4.5)", "(1,\\frac{9}{2})"))
# print(math_equal("\\frac{x}{7}+\\frac{2}{7}", "\\frac{x+2}{7}", timeout=True))
# print(math_equal("\\sec^2(y)", "\\tan^2(y)+1", timeout=True))
# print(math_equal("\\begin{pmatrix}-\\frac{7}{4}&-2\\\\4&\\frac{1}{4}\\end{pmatrix}", "(\\begin{pmatrix}-\\frac{7}{4}&-2\\\\4&\\frac{1}{4}\\\\\\end{pmatrix})", timeout=True))
# pred = '\\begin{pmatrix}\\frac{1}{3x^{2/3}}&0&0\\\\0&1&0\\\\-\\sin(x)&0&0\\end{pmatrix}'
# gt = '(\\begin{pmatrix}\\frac{1}{3\\sqrt[3]{x}^2}&0&0\\\\0&1&0\\\\-\\sin(x)&0&0\\\\\\end{pmatrix})'
# pred= '-\\frac{8x^2}{9(x^2-2)^{5/3}}+\\frac{2}{3(x^2-2)^{2/3}}'
# gt= '-\\frac{2(x^2+6)}{9(x^2-2)\\sqrt[3]{x^2-2}^2}'
# pred = '-34x-45y+20z-100=0'
# gt = '34x+45y-20z+100=0'
# pred = '\\frac{100}{3}'
# gt = '33.3'
# pred = '\\begin{pmatrix}0.290243531202435\\\\0.196008371385084\\\\-0.186381278538813\\end{pmatrix}'
# gt = '(\\begin{pmatrix}0.29\\\\0.196\\\\-0.186\\\\\\end{pmatrix})'
# pred = '\\frac{\\sqrt{\\sqrt{11}+\\sqrt{194}}}{2\\sqrt{33}+15}'
# gt = '\\frac{\\sqrt{\\sqrt{11}+\\sqrt{194}}}{15+2\\sqrt{33}}'
# pred = '(+5)(b+2)'
# gt = '(a+5)(b+2)'
# pred = '\\frac{1+\\sqrt{5}}{2}'
# gt = '2'
# pred = '\\frac{34}{16}+\\frac{\\sqrt{1358}}{16}', gt = '4'
# pred = '1', gt = '1\\\\sqrt{19}'
# pred = "(0.6,2.6667]"
# gt = "(\\frac{3}{5},\\frac{8}{3}]"
gt = "x+2n+1"
pred = "x+1"
print(math_equal(pred, gt, timeout=True))
if __name__ == "__main__":
_test_math_equal()
|